组合数学是一门历史悠久的数学分支,它发源于数学的消遣和游戏.不管是为了消遣,还是为了数学的 美学兴趣,过去研究过的许多组合数学问题,对于今天的纯粹数学或应用数学来说都是非常重要的.特别是 随着数字计算机技术的飞速发展,组合数学更成为现代数学中非常重要的一个研究分支,而且它的影响正 在迅速扩大
文件格式: PDF大小: 1.6MB页数: 143
无穷乘积的定义 设 p1,p2,…, n p ,…( ≠ 0 n p )是无穷可列个实数,我们称它 们的“积” ⋅ 21 ⋅ ⋅ ppp n ⋅\\ 为无穷乘积,记为∏ ∞ n=1 pn ,其中 n p 称为无穷乘积的通项或一般项
文件格式: PDF大小: 215.05KB页数: 29
任意项级数 一个级数,如果只有有限个负项或有限个正项,都可以用正项级 数的各种判别法来判断它的收敛性。如果一个级数既有无限个正项, 又有无限个负项,那么正项级数的各种判别法不再适用。 这样的级数,即通项任意地可正或可负的级数,称为任意项级数
文件格式: PDF大小: 304.32KB页数: 48
正项级数 定义 9.3.1 如果级数∑ ∞ n=1 n x 的各项都是非负实数,即 xn ≥ 0,n = 1,2,…, 则称此级数为正项级数
文件格式: PDF大小: 254.59KB页数: 37
数列的上极限和下极限 先考虑有界数列的情况。 定义921在有界数列{xn}中,若存在它的一个子列{xn}使得 lim xn 则称为数列{xn}的一个极限点
文件格式: PDF大小: 224.53KB页数: 29
数项级数 设 1 x , 2 x ,…, n x ,…是无穷可列个实数,我们称它们的“和” 1 x + 2 x +\+ xn +\ 为无穷数项级数(简称级数),记为∑ ∞ n=1 n x ,其中 n x 称为级数的通项或一 般项
文件格式: PDF大小: 170.84KB页数: 21
反常积分的 Cauchy收敛原理 下面以∫厂f(x)dx为例来探讨反常积分敛散性的判别法。 由于反常积分。f(x)dx收敛即为极限mJf(x存在,因此对 其收敛性的最本质的刻画就是极限论中的 Cauchy收敛原理,它可以 表述为如下形式:
文件格式: PDF大小: 200.72KB页数: 32
反常积分 前面讨论 Riemann 积分时,假定了积分区间[, ] a b 有限且被积函 数 f x( )在[, ] a b 上有界,但在实际应用中经常会碰到不满足这两个条 件,却需要求积分的情况。所以,有必要突破 Riemann 积分的限制 条件,考虑积分区间无限或被积函数无界的积分问题,这样的积分称 为反常积分(或广义积分),而以前学过的 Riemann 积分相应地称 为正常积分(或常义积分)
文件格式: PDF大小: 311.83KB页数: 34
数值积分 对于求定积分,虽然有了 Newton-Leibniz 公式,但在整个可积函 数类中,能够用初等函数表示不定积分的只占很小一部分,也就是说, 对绝大部分在理论上可积的函数,并不能用 Newton-Leibniz 公式求得 其定积分之值。 另一方面,在实际问题中,许多函数只是通过测量、试验等方法 给出了在若干个离散点上的函数值,如果问题的最后解决有赖于求出 这个函数在某个区间上的积分值,那么 Newton-Leibniz 公式是难有用 武之地的
文件格式: PDF大小: 154.18KB页数: 13
微元法 我们先回忆一下求曲边梯形面积S 的步骤:对区间[, ] a b 作划分 ax x x x b = 012 < < <\< n = , 然后在小区间 ],[ 1 ii xx − 中任取点ξ i ,并记 =Δ − iii −1 xxx ,这样就得到了小 曲边梯形面积的近似值 i ii Δ ≈ ξ )( ΔxfS 。最后,将所有的小曲边梯形面积 的近似值相加,再取极限,就得到
文件格式: PDF大小: 340.11KB页数: 27
©2025 mall.hezhiquan.com 和泉文库
帮助反馈侵权