111例1 求 lim(2n2+222+1n→0Inn'+n11nn解Vn?n2+1+1+n+nnT又 limlim21n08+nn1 +n1nlimlim由夹逼定理得11n>+1n>心n111lim(22+2n-0+1n+nO高等数学(上册)
例1 ). 1 2 1 1 1 lim( 2 2 2 n n n n n 求 解 , 1 1 1 1 2 2 2 2 n n n n n n n n n n n n n n 1 1 1 lim 2 lim 又 1, 2 2 1 1 1 lim 1 lim n n n n n 1, 由夹逼定理得 ) 1. 1 2 1 1 1 lim( 2 2 2 n n n n n
21n求lim(例.+n+2n>0+n+lnnn+n+nS21n角解记xn?+n+1n?+n+2n-+n+n将x,放缩得21+2+..+n1+2+...+nn≤x.<nn?+n+nn?+n+1-n+i+n+nn6高等数学(上册)
例 解 2 2 2 1 2 lim( ). n 1 2 n n n n n n n n 求 + 2 2 2 1 2 1 2 n n x n n n n n n n 记 + , n 将x 放缩得 2 2 2 2 2 1 2 1 2 1 2 1 1 1 1 n n n n x n n n n n n n n n n n +
接n(n +1)11+2+...+n2而 limlim2'n?+n+n.n-00n>0n'+n+nn(n+ 1)11+2+...+n2limlimn2+n+1n-→ n? + n+12n-→001即根据夹逼准则得,limx2nn->021国nlim(2n?+n+2+n+1n→nn+n+nC高等数学(上册)
接 前 2 2 2 1 2 1 lim( )= . n 1 2 2 n n n n n n n n + 2 2 ( 1) 1 2 1 2 lim lim n n 2 n n n n n n n n n 而 , 2 2 ( 1) 1 2 1 2 lim lim n 1 n 1 2 n n n n n n n , 1 lim = 2 n n x 根据夹逼准则得, ,即