二维分布函数F(xy)的性质 F(xy)是x或的单调非减.之 (2)0≤F(x)s1,月F(++∞0)=imF(xy)=1 x-)+0 y F(→∞,y)=limF(x,y)=0 F(x,-∞)=1imF(xy)=0, y F(-∞,-∞)=limF(x,y)=0 x→-00 (3)F(xy)是x或y的右连续函数
二维分布函数 F(x, y)的性质: (1) Fxy (,) 是 x 或 y 的单调非减. (2) 0 1 ≤ ≤ Fxy (,) ,且 (+∞,+∞) = lim ( , ) =1 →+∞ →+∞ F F x y y x F y Fxy x ( , ) lim ( , ) −∞ = = →−∞ 0 , F(x,−∞) = lim F(x, y) = 0 y ( , ∞) lim ( , ) →−∞ 0 , F Fxy x ( , ) lim ( , ) −∞ −∞ = = →−∞ 0 y→−∞ (3)F(,) x y 是 x或 y 的右连续函数
P(,<Sbir2<F≤b) =F(b1,)-F(an,2)-F(b,a2)+F(a,n2)
P( X ≤ b Y ≤ b ) ( , ) ( , ) ( , ) ( , ) ( , ) 1 2 1 2 1 2 1 2 1 1 2 2 F b b F a b F b a F a a P a X b a Y b = − − + < ≤ < ≤ y b2 a2 0 x a1 b1
已知随机变量(X,Y) y2 多的分布函数F(y,y 求X,)落在如图区 域G内的概率 答: P{(X,Y)∈G}={[F(x2,y1)+F(x3,y3)-(x2,y3)-(x3,y1 +[F(x1,y2)+F(x2y3)-(x1,y3)-(x2y2)=…
3 y y 已知随机变量(X,Y) y 的分布函数 2 F (x,y), 求(X,Y)落在如图区 1 求 y (,) 在 图 域G内的概率. 答 x1 x2 x3 答: P{(X Y ) G} [F( ) F( ) ( ) ( )] + + − − = ⋅⋅⋅ ∈ = + − − [ ( , ) ( , ) ( , ) ( , )] {( , ) } [ ( , ) ( , ) ( , ) ( , )] 1 2 2 3 1 3 2 2 2 1 3 3 2 3 3 1 F x y F x y x y x y P X Y G F x y F x y x y x y 1 2 2 3 1 3 2 2 y y y y
例1已知二维随机变量(X,Y)的分布函数为 F(x, y)=AB++ arcto 1求常数A,B,C。2求P0<X<2,0<Y<3} 解:F(a,∞)=AIB+"ⅢC+=1 F(-0,)=A|B、z IIC+ arct() F(x,00)=AB+arcto C 3π2 丌 →B=C=-A= 」P0<X52.0<Y≤3}=F0.0+F(2.3-F(03)-F(2
例1.已知二维随机变量(X,Y)的分布函数为 ( , ) [ ( )][ ( )] y C arctg x F x y = A B + arctg + )] 3 )][ ( 2 F(x, y) A[B + arctg( C + arctg 1)求常数A,B,C。 2)求P{,} 0<X<2,0<Y<3} 解: ] 1 2 ][ 2 ( ∞ , ∞ ) = [ + + = π π F A B C 2 2 )] 0 3 ][ ( 2 ( −∞ , ) = [ − + = y F y A B C arctg π ] 0 2 )][ 2 ( , −∞ ) = [ + ( − = π C x F x A B arctg π 1 2 2 π ⇒ B = C = A = 1 P{0 < X ≤ 2 0 < Y ≤ 3} F(0 0) + F(2 3) F(0 3) F(2 0) 16 P{0 < X ≤ 2,0 < Y ≤ 3} = F(0,0) + F(2,3) − F(0,3) − F(2,0) =