二、协方差的性质:1. Cov(X,Y) =Cov(Y,X), Cov(X,X)= D(X)2. Cov(X,Y)= E(XY)-E(X)E(Y)3. Cov(aX,bY)=abCov(X,Y) a,b是常数4. Cov(X, + X2, Y) =Cov(Xi,Y)+Cov(X2,Y)思考Cov(aX +bY,cX +dY)=?D(aX +bY)=?答案:acD(X)+bdD(Y)+(ad+bc)Cov(X,Y)aD(X)+bD(Y)+2abCov(X,Y)
二、协方差的性质: Cov aX bY cX dY D aX bY ( , ) ? ( ) ? 2 2 ( ) ( ) ( ) ( , ) ( ) ( ) 2 ( , ) acD X bdD Y ad bc Cov X Y a D X b D Y abCov X Y 答案: 思考 1. ( , ) ( , ) ( , ) ( ) Cov X Y Cov Y X Cov X X D X , 2. ( , Cov X Y E XY E X E Y ) ( ) ( ) ( ) 3. ( , ) ( , ) , Cov aX bY abCov X Y a b 是常数 1 2 1 2 4. ( , ) ( , ) ( , Cov X X Y Cov X Y Cov X Y )
证明4):利用 COV(X,Y)=E(XY)-E(X)E(Y)4)COV(X, + X, Y)= E[(X, + X,)Y)- E(X, + X,)E(Y)= E(X,Y + X,Y)-[E(X)+E(X,)]E(Y)=[E(X,Y)- E(X)E(Y)]+[E(X,Y) -E(X,)E(Y))=COV(X,,Y)+COV(X,,Y)
4) ( ) COV X X Y 1 2 , [E(X Y) E(X )E(Y)] [E(X Y) E(X )E(Y)] 1 1 2 2 E[(X X )Y] E(X X )E(Y) 1 2 1 2 证明4):利用 E(X Y X Y) [E(X ) E(X )]E(Y) 1 2 1 2 COV(X,Y) E(XY) E(X)E(Y) ( , ) ( , ) COV X1 Y COV X2 Y