中国矿亚大业CHINA UNIVERSITYOF MININGANDTECHNOLOGY(2)当n=2时,即已知三点xoX1X2xyyoyy2则Lagrange抛物插值(二次插值)多项式为P(x) = yolo(x)+ yil(x)+ yzl(x)(x-x)(x-x,)(x-x,)(x-x,)即 P,(x)= J.(x, - x,)(x, - x,)++ Ji(x,- x)(x-x)(x - x.)(x -x)+ Je (x, - x)(x - x)
CHINA UNIVERSITY OF MINING AND TECHNOLOGY (2) 当 n=2时,即已知三点 则Lagrange抛物插值 (二次插值 )多项式 为 2 00 11 22 P x() () () () = y l x + + y l x y l x 即
中国矿大业CHINAUNIVERSITY OFMININGAND TECHNOLOGY例1已知f(x)满足f(144)=12,f(169)=13,f(225)=15作f(x)的二次Lagrange插值多项式,并求f(175)的近似值(x-x)(x-x,)(x-169)(x - 225)解1.(x)2025(x -x)(x。 -x)(x-x,)(x-x,)(x -144)(x - 225)(x) :-1400(x -x(x -x,)(x-144)(x-169)(x-x(x-x)1,(x) =4536(x2 -xo)(xz -x)因此f(x)的二次Lagrange插值多项式为P(x) = yol,(x)+ yil,(x)+ yzl(x)且f(175)~P,(175)= 121,(175)+13,(175) +15l,(175)-13.23015873
CHINA UNIVERSITY OF MINING AND TECHNOLOGY ( ) (144) 12, (169) 13, (225) 15 ( ) Lagrange , (175) . fx f f f fx f 已知 满足 = = = 作 的二次 插 例 值多项式 并求 的近似值 1 解 1 2 0 10 2 ( )( ) ( )( ) x xxx x xx x − − = − − 0l x( ) ( 169)( 225) 2025 x x − − = 1l x( ) 0 2 1 01 2 ( )( ) ( )( ) x x xx x xx x − − = − − ( 144)( 225) 1400 x x − − = − 2l x( ) 0 1 2 02 1 ( )( ) ( )( ) x x xx x xx x − − = − − ( 144)( 169) 4536 x x − − = 因此 的二次 插值多项式为 f x( ) Lagrange 2 00 11 22 P x yl x yl x yl x () () () () = + + 且 f (175) 2 ≈ P (175) 012 = 12 (175) 13 (175) 15 (175) lll + + = 13.230 158 73
中国矿基大鉴CHINA UNIVERSITYOF MINING AND TECHNOLOGY例2用Lagrange线性插值多项式求例1中的f(175)解由于插值点x=175在x,=169与x,=225之间因此取x,=169与x,=225为插值节点Lagrange插值基函数为4(x) =×-± _ x-225x-169X-X1,(x)=-56X,-X256X2-X.Lagrange线性插值多项式为P(x)= yil(x) + y,l(x) = 13. ±-225+15.×-16956-56175-169: f(175) ~ 13. 175 - 22513.21428571+1556-56
CHINA UNIVERSITY OF MINING AND TECHNOLOGY 例2 用 线性插值多项式求例 中的 Lagrange 1 (175). f 解 1 2 由于插值点 在 与 之间 xx x = 175 169 225 = = 1 2 因此取 与 为插值节点 x x = 169 225 = Lagrange插值基函数为 1l x( ) 2 1 2 x x x x − = − 225 56 x − = − 2l x( ) 1 2 1 x x x x − = − 169 56 x − = ∴Lagrange线性插值多项式为 1 11 22 P x() () () = y l x + y l x 225 13 56 x − = ⋅ − 169 15 56 x − + ⋅ ∴ f (175) 175 225 13 56 − ≈ ⋅ − 175 169 15 56 − + ⋅ = 13.214 285 71
中国矿亚天鉴CHINA UNIVERSITYOFMININGANDTECHNOLOGY>插值余项/*Remainder*设节点a≤x<x<.<x,≤b,且r满足条件eC"[a,b],(n+I)在[a,b]内存在,考察截断误差 R,(x)=f(x)-P,(x)Rolle'sTheorem:若p(x)充分光滑,(x)=Φ(x)=0,则存在 (x,x) 使得 ()=0。推广: 若 p(x)=p(x)=p(x2)=0 → (xo,x), 5 (x,x)使得 p(5)=P(5)=0 (5,5) 使得 "()= 0若 Φ(x)=...=(x,)=0—存在(a,b)使得 (" ()=0
CHINA UNIVERSITY OF MINING AND TECHNOLOGY ¾ 插值余项 /* Remainder */ 设节点(n + 1) f 在 [ a , b ]内存在, 考察截断误差 () () () R x fx Px n n = − f C [a,b] n a x x x b ∈ ≤ 0 < 1 < " < n ≤ ,且 f 满足条件 , Rolle’s Theorem: 若 充分光滑, ,则 存在 使得 。 ϕ ( x ) ϕ ( x 0 ) = ϕ ( x1 ) = 0 ( , ) ξ ∈ x 0 x 1 ϕ′(ξ ) = 0 推广:若 ϕ( x 0 ) = ϕ( x 1 ) = ϕ( x 2 ) = 0 ( , ), ( , ) ξ 0 ∈ x 0 x1 ξ 1 ∈ x1 x 2 使得 ϕ′(ξ 0 ) = ϕ′(ξ 1 ) = 0 ( , ) ξ ∈ ξ 0 ξ 1 使得 ϕ′′(ξ ) = 0 ϕ ( x 0 ) = " = ϕ ( x n ) = 0 存在 ξ ∈ ( a, b ) 使得 ( ) 0 ( ) ϕ ξ = n 若
中国矿亚大整CHINAUNIVERSITY OF MININGANDTECHNOLOGY>插值余项/*Remainder*/设节点 a≤x<x,<...<x,≤b,且f满足条件feC"[a,bl],f(a+I)在[a,b]内存在,考察截断误差 R,(x)=f(x)-P,(x)R,(x)至少有 n+1个根 → R,(x)=K(x)/I(x-x,)i=0任意固定x±x; (i= 0, ., n), 考察 p(t)= R,(t)- K(x)II(t-x,)i=0p(t)有 n+2 个不同的根xo xnx → p("+1)()=0, (a,b)IIf(n+1)(5,)- P(n+(5))- K(x)(n+ 1)!= R(u+)(5.)- K(x)(n +1)!f(n+1(5)R,(-((a-x)K(x)=(n+1)!(n + 1)!i=0
CHINA UNIVERSITY OF MINING AND TECHNOLOGY ¾ 插值余项 /* Remainder */ 设节点(n + 1) f 在 [ a , b ]内存在, 考察截断误差 () () () R x fx Px n n = − f C [a,b] n a x x x b ∈ ≤ 0 < 1 < " < n ≤ ,且 f 满足条件 , R n (x) 至少有 个根 n+1 0 () ( ) ( ) n n i i Rx x x K x = = − ∏ 任意固定 x ≠ xi ( i = 0, ., n), 考察 0 () () ( ) ( ) n n i i ϕ t Rt t x K x = =− − ∏ ϕ( t) 有 n+2 个不同的根 x 0 . x n x ( ) 0, ( , ) ( 1) a b x x n = ∈ + ϕ ξ ξ ∏= + − + = n i i x n n x x n f R x 0 ( 1) ( ) ( 1 )! ( ) ( ) ξ ( 1) ( ) ( )( 1)! n R Kx n n x ξ + − + ( 1) ( 1) ( ) ( ) ( )( 1)! n n xn x f P Kx n ξ ξ + + − − += ( 1) ( ) ( ) ( 1)! n x f K x n ξ + = +