线性变换的和 1.定义 设σ,为线性空间V的两个线性变换,定义它们 的和a+c为:(a+)(a)=(a)+(a),vaEV 则σ+也是Ⅴ的线性变换 事实上,(σ+t)(a+B)=o(a+B)+(a+B) =(a)+o(B)+t(a)+v(B)=(+τ)(a)+(a+7)(B) (o+ica=o(ka)+t(ka=ko(a)+ki(a) k((a+t(a=k(o+r(a)
6 则 + 也是V的线性变换. 二、 线性变换的和 1.定义 设 , 为线性空间V的两个线性变换,定义它们 的和 + 为: ( + = + )( ) ( ) ( ), V 事实上, ( )( ) ( ) ( ) + + = + + + = + + + = + + + ( ) ( ) ( ) ( ) ( )( ) ( )( ), ( )( ) ( ) ( ) ( ) ( ) + = + = + k k k k k = + = + k k ( ( ) ( )) ( )( ).
2.基本性质 (1)满足交换律:σ+τ=+ (2)满足结合律:(a+)+6=a+(z+6) (3)0+G=+0=a,0为零变换 (4)乘法对加法满足左、右分配律: ot+8=ot+o8 r+8o=to+do
7 (3) 0 0 , + = + = 0为零变换. (4)乘法对加法满足左、右分配律: ( + = + ) ( + = + ) 2.基本性质 (1)满足交换律: + = + (2)满足结合律: ( + + = + + ) ( )