例4计算∫ 4 arcsin√x dx 保证x=0(t)的单调性 解令anx=1,则x=sn2t,dx=2 e sin t cost d1, 且x 时,t: 故 44 arcsin dx t·2 sin t costd t 6√Sn2t·(1-sin2 23tdt 2
例 4解 d . (1 ) arcsin 434 1 − x x xx 计算 arcsin sin d 2sin cos d 令 x = t,则 x = 2 t, x = t t t, 保证 x = (t) 的单调性 3 6 : 43 41 且 : 时, ,故 x → t → sin (1 sin ) 2sin cos d d (1 ) arcsin 36 2 2 434 1 − = − t t t t t t x x xx = 36 2 d t t 36 2 = t 122 =
2 例5计算∫:x21固为x0故中2 <t<丌 解令x=cb,则dx=andb, 2丌3丌 且x:-2 2时,t ,故 2 dxi tant sectdt 2 2丌 tan t 3丌 2丌 sect t 3丌 --In sect+tant 24 2+√3 1+√2
例 5解 . 1 d 2 2 2 −− x −x 计算令 x = sec t,则 d x = sec t tant dt, . 2 0 sec 因为 x ,故 t中 t 43 32 且 : 2 2 时, : ,故 x − → − t → tan tan sec d 1 d 4332 2 2 2 − = − −− t t t t x x sec d 433 = − 2 t t 4332 ln |sec tan | = − t + t . 1 2 2 3 ln ++ =
例证明: sinxdx coS xdx 则dx=-dt, 且x:0 时 0,故 2 Jo sin=isin(-n)"(dt) 2 cos"tdt cos"tdt coS xdx 0 0
例 6 sin d cos d . 20 2 0 = x x x x 证明: n n 证 d d 2 令 x = −t,则 x = − t, 0 2 : 2 且 : 0 → 时, → ,故 x t 1)) ( d ) 2 sin d (sin ( 02 2 0 = − − x x t n n cos d 02 = − t t n cos d 2 0 = t t n cos d . 2 0 = x x n
例7设/()∈C(a.d)证明 )f(x)为偶函数,则∫。f(x)dx=2J/(xdx (2)f(x)为奇函数,则」f(x)dx=0 证因为∫”(x)dx=J f(x)dx+f(x)dx 故令x=-1,则dx=-dt,且x:-a→>0时,t:a→>0,从而 f(x)dx=/(1(dr)=f(dt=f(x)dx 于是 f(x)dx=f(x)dx+f(x)dx=If(x)+f(x)]d
例 7证 设 f (x) C([− a, a]),证明: (1) ( ) ( )d 2 ( )d . 0 = −a a a f x 为偶函数,则 f x x f x x (2) ( ) ( )d = 0. −aa f x 为奇函数,则 f x x ( )d ( )d ( )d , 0 0 = + − − a a aa 因为 f x x f x x f x x 故令 x = −t,则 d x = −dt,且 x : −a →0 时,t : a →0,从而 = − − −0 0 ( )d ( )( d ) a a f x x f t t = − a f t t 0 ( )d ( )d . 0 = − a f x x ( )d ( )d ( )d [ ( ) ( )]d . 0 0 0 = − + = − + −a a a a a f x x f x x f x x f x f x x 于是
f(xdx=f(x)dx+f(x)dx f∫(-x)+f(x)dx (1)若f(x)为偶函数,则f(-x)=f(x),故有 f(x)dx=2.f(x)d x (2)若f(x)为奇函数,则f(-x)=-f(x),故有 f(xdx=o
(1) 若 f (x)为偶函数,则 f (−x) = f (x),故有 ( )d 2 ( )d . 0 = − a a a f x x f x x (2) 若 f (x)为奇函数,则 f (−x) =-f (x),故有 ( )d = 0. − a a f x x ( )d ( )d ( )d [ ( ) ( )]d . 0 0 0 = − + = − + − a a a a a f x x f x x f x x f x f x x