例 设f(x)∈R(-∞,+∞),且以为周期.证明: a+T T va∈R,有f(x)dx=Jf(x)dx 证因为 T a+t f(xdx= f(x)dx+ f(x)dx+l- f(x)dx 故令x=1+T,则dx=dt,且x:T→>a+T时,t:0→a,从而 a+T f(x)dx=f(+r)dt=Jor(dt=or()dx T 0 T 于是 f(xdx=l f(x)dx+l f(x)dx+lf(x)dx 0 a l0(x)dx+」0f(x)dx+」0(x)dx =f()dx
例 8 证 设 f (x)R((−, + )),且以为周期. 证明: ( )d ( )d . 0 = a+T T a a R,有 f x x f x x ( )d ( )d ( )d ( )d , 0 0 + + = + + a T T T a a T a 因为 f x x f x x f x x f x x 故令 x = t +T,则 d x = dt,且 x :T →a +T 时,t :0 →a,从而 ( )d ( )d 0 = + a+T a T f x x f t T t ( )d ( )d 0 0 = = a a f t t f x x ( )d ( )d ( )d ( )d 0 0 0 = + + + T a a a T a 于是 f x x f x x f x x f x x ( )d ( )d ( )d 0 0 0 = − + + a T a f x x f x x f x x ( )d . 0 = T f x x
例9计算!+0X 解令x=z-,则dx=-d,x:0→z时,:z→0故 xsin xdx o(t-t)sint(dt) Jo 1+cosx 1+cost sin tdt rt t sintdt 0 1+cost Jo1+cost sin xdx rzx sinxdx 0 1+cosx Jo 1+cos x 从而 T x sinxdx丌 rT sin xdx丌 0 1+cos x 2J0 1+cosx 2 Arctan(cos x))o4 u= COSx
例 9解 . 1 cos sin d 0 2 + x x x x 计算令 x = −t,则 d x = −dt, x : 0 → 时, t : →0,故 1 cos ( )sin ( d ) 1 cos sin d 0 2 0 2 + − − = + t t t t x x x x 1 cos sin d 1 cos sin d 0 2 0 2 + − + = t t t t t t t 1 cos sin d 1 cos sin d 0 2 0 2 + − + = x x x x x x x + = + 0 2 0 2 1 cos sin d 1 cos 2 sin d x x x x x x x 从而 . 4 ( arctan(cos )) 2 2 0 = − x = u = cos x
二、定积分的分部积分法 突理设函数l(x)1(x)在b上可导 且u(x),v(x)∈R([a,b],则 u(x)y'(xdx=u(xv(x u(x)(x)dx 该公式称为定积分的分部积分公式 证明与不定积分的情形类似
二、定积分的分部积分法 定理 设函数 u(x),v(x) 在[a, b]上可导, 且 u (x),v (x)R([a, b]),则 ( ) ( )d ( ) ( ) ( ) ( )d . = − b a b a b a u x v x x u x v x u x v x x 该公式称为定积分的分部积分公式. 证明与不定积分的情形类似
cosr e 例10计算 ecos xd. Sin x 解|』 e cos xdx=e cosx<te sinxdx 0 SIn x =-1+2e sin xdx COSx =-1+e sin x 2 e cosxdx 0J0 -1+e2-2 e cos xd 0 故「2e2 cosxdx=(e2-1)
例10 解 cos d . 0 e x x 计算 x cos x x e x −sin x e cos d cos sin d 2 0 2 0 2 0 = + e x x e x e x x x x x 1 sin d 2 0 = − + e x x sin x x x e x cos x e 1 sin cos d 2 0 2 0 = − + − e x e x x x x 1 cos d 2 0 2 = − + − e e x x x ( 1). 2 1 cos d 2 2 0 = − e x x e 故 x