暇积分无穷积分柯西准则第二积分中值定理Dirichlet判别法Abel判别法比较判别法还有如下极限形式定理 6 如果 f(α) 和 g(α) 在[α, +o)上有定义且非负,并且对任意b>a, f(a) 和 g(α) 在[a,b] 可积,lim f( = k,那么有ga+1°若o< k<+oo,则 +f(a)da 与 t~g(α)da 同敛散2°若 k = 0, 则当 J+~g(a)da 收敛时, J+αf(α)dc 也收敛3°若 k = +oo, 则当 J+~g(c)dac 发散时, J+~f(αc)dc 也发散+αada收敛例4Va+i(c4+a+1)证明当→+8时α215/2V+i(4++1)而J+~收敛,由定理5即知原积分收敛返回全屏关闭退出11/36
áȩ ÜOK 1È©¥½n Dirichlet O{ Abel O{ aÈ© 'O{kXe4/ª. ½n 6 XJ f(x) Ú g(x) 3 [a, +∞) þk½Â K, ¿ é?¿ b > a, f(x) Ú g(x) 3 [a, b] È, lim x→+∞ f(x) g(x) = k, @ok 1 ◦ e 0 < k < +∞, K R +∞ a f(x)dx R +∞ a g(x)dx ÓñÑ; 2 ◦ e k = 0, K R +∞ a g(x)dx Âñ, R +∞ a f(x)dx Âñ; 3 ◦ e k = +∞, K R +∞ a g(x)dx uÑ, R +∞ a f(x)dx uÑ. ~ 4 Z +∞ 1 x 2dx √ x + 1(x4 + x + 1) Âñ. y² x → +∞ x 2 √ x + 1(x4 + x + 1) ∼ 1 x5/2 . R +∞ 1 dx x5/2 Âñ, d½n 5 =È©Âñ. 11/36 kJ Ik J I £ ¶ '4 òÑ
Abel判别法暇积分无穷积分柯西准则第二积分中值定理Dirichlet判别法例 5 设 f(α) 在[0,+o)上连续可导,且 f(0) > 0, f'(α) ≥ 0 (c >0)11da 收敛,则da也收敛若无穷积分f(α)f(α) + f'(α)10a(第四届大学生数学竞赛预赛数学类试题证明因为1da0f(c)f(α) + f'(c)Af'(αc)f'(α)dadaf2(αc)f(α)(f(α) + f(α))0CA1111df(0)f(0)f(A)f(α)所以+811dadac +f(0)f(α)f(α) + f'(α)010tx7故da收敛f(α)J0返回全屏关闭退出II12/36
áȩ ÜOK 1È©¥½n Dirichlet O{ Abel O{ aÈ© ~ 5 f(x) 3 [0, +∞) þëY, f(0) > 0, f 0 (x) > 0 (x > 0). eáȩ Z +∞ 0 1 f(x) + f 0(x) dx Âñ, K Z +∞ 0 1 f(x) dx Âñ. (1o3Æ)êÆ¿mýmêÆaÁK) y² Ï 0 < Z A 0 1 f(x) dx − Z A 0 1 f(x) + f 0(x) dx = Z A 0 f 0 (x) f(x)(f(x) + f 0(x)) dx 6 Z A 0 f 0 (x) f 2(x) dx = Z A 0 − 1 f(x) 0 dx = 1 f(0) − 1 f(A) < 1 f(0) . ¤± Z A 0 1 f(x) dx < Z +∞ 0 1 f(x) + f 0(x) dx + 1 f(0) . , Z +∞ 0 1 f(x) dx Âñ. 12/36 kJ Ik J I £ ¶ '4 òÑ