西安交通大学IE'ANJLROTONANIYEESTY第五节稳定裕度
1 第五节 稳定裕度
西安交通大学IE'ANJIAOTONG UNIVEESITY在频率响应方法中系统的相对稳定性是利用开环传递函数的极坐标图与(一1,jO)点的接近程度来反映闭环系统稳定或不稳定的程度。ImG(s)平面0c30g3-1ReQg10c2=0g920c1K2K3K,4
4 在频率响应方法中系统的相对稳定性是利用开环传递函数 的极坐标图与(-1,j0)点的接近程度来反映闭环系统稳定或不 稳定的程度。 -1 Re Im G(s)平面 K3 K2 K1 c1 c3 c2=g2 g1 g3
西安交通大学EEANJIROTONGNIVEESTY广定义极坐标图穿过负实轴(此时G(s)平面(の)=一180°)对应的频率为相角穿越频率,用の表示;A(0g)定义幅值A()=1对应的频率为幅09(0→8)-1值穿越频率,用の表示。0当频率特性曲线穿过(-1,j0)点时:0Cp(o)系统处于临界稳定状态。这时:A(0g)=1, Q(0)=-180° ,0g=0c o最小相位系统稳定的条件为:当A()=1时,()>180°(0→0)当(0)=-180° 时A(0。)<15
5 - 1 0 → 0 j → ∞ c g A g c G ( s 平 面 定义极坐标图穿过负实轴 (此时 ( )= -180 ° )对应的频率为相角穿 越频率 , 用 g表示; 定义幅值A ( )=1对应的频率为幅 值穿越频率,用 c表示。 当频率特性曲线穿过 ( -1,j0)点时, 系统处于临界稳定状态。这时: A(g )=1, ( c )= -180 ° , g = c 。 最小相位系统稳定的条件为: 当 A ( c )=1时, ( c )>-180 ° 当 ( g )= -180 ° 时A ( g ) < 1
西安交通大学EE'ANILAOTONGENIVEEST定义:相角穿越频率时的幅频特性的倒数为幅值稳定裕度,即1G(s)平面K.XA(0g)A(0)(0→8)在对数坐标图上,采用L。表示K。的分贝值0g00Lg = 20 lg K = -20 lg A(αg)Cp(o)L.称为对数幅值稳定裕度或增益稳定裕度,由于L。应用较多,通常直接被称为幅值稳(0→0)定裕度。定义:幅值穿越频率时的相频特性与一180°之差为相角稳定裕度。即=Φ(@) -(-180°) = 180°+(。)6
6 定义:相角穿越频率时的幅频特性的倒数为幅值稳定裕度,即 ( ) 1 g g A K = 定义:幅值穿越频率时的相频特性与-180°之差为相角稳定 裕度。即 ( ) ( 180 ) 180 ( ) c c = − − = + Lg称为对数幅值稳定裕度或增益稳定裕度, 由于Lg应用较多,通常直接被称为幅值稳 定裕度。 在对数坐标图上,采用Lg表示Kg的分贝值 20lg 20lg ( ) Lg = Kg = − A g -1 0 →0 j →∞ c g Ag c G(s平面
西安交通大学IE'ANJIAOTONG UNIVEESITYL(o)G(s)平面A(0)Q800Q(0→8)100p(o) Qcp(o)-90Y0-18009(0-+0)-2707
7 -1 0 →0 j →∞ c g Ag c G(s平面 0 -270 -180 -90 Lg L() () c g