等中最后一使其式逼判了变量明换u=t-,并定利逼了被我函数期周的性先部【一元-,元-]上期我分其类部【一元,元]上期我分,积从可以进一步改写为[" f(r + u) + f(e-u) sin(n + )uduSn(ar) =2sin 元0的意判,>0,由Riemann-Lebesgue看理1sin(n + )udrf(r+u)+f(a-u)lim1lim Sn(r)2sin "元n-→+0/o" f(r+u) +(f -u)+ lim2sin1r f(r +u)+ f(a-u).sin(n +)udlim2元n-→00Josin #开此,Sn(a)期收敛性们梯f部附要期性态有关,这更Riemann期发记,有时称为Riemann局部化例理定理1(Dini故而分)设f如前.如果日>0,使得(1)部r处期右系限f(r+)梯左系限f(r-)存部(2)我分r° f(r-u) -f(r-)duro f(a + u) - f(a+)du,u10绝对收敛,敛于期Fourier级数部点a处收敛类值(a+)+f(a-)2证明基本上更应逼 Riemann-Lebesgue 看理,以下的意判函数二-部2sin岁[0,]上期部续性下面积从以一使好故情形加以证明,这使情形对大多数应逼更足收期定义1设f更且义部[a,]上期函数,如果存部[a,b]期划分a=to<ti<...<tm=b,使得部每一使[ti-1,t](i=1,2,·**,m)上且义期函数f(ti-1+), a= ti-1fi(a)=f(a), ae(ti-1,t)(f(ti-),a=ti6
%,W{@%A"[ u = t − x, )^PI$!$p, bÆ [−π − x, π − x] 9$^8%Æ [−π, π] 9$^8. ^}x{ >n\ Sn(x) = 1 π Z π 0 f(x + u) + f(x − u) 2 · sin(n + 1 2 )u sin u 2 du $", ∀ δ > 0, Riemann-Lebesgue , limn→∞ Sn(x) = 1 π limn→∞ Z δ 0 f(x + u) + f(x − u) 2 · sin(n + 1 2 )u sin u 2 du + limn→∞ 1 π Z π δ f(x + u) + (f − u) 2sin u 2 = 1 π limn→∞ Z δ 0 f(x + u) + f(x − u) 2 · sin(n + 1 2 )u sin u 2 du , Sn(x) $EpR f Æ x <y$pOH, C Riemann $3e, = \ Riemann |ÆZ . 7B 1 (Dini G18) ; f 5(. 5M ∃ δ > 0, @# (1) f Æ x $_f f(x+) R-_f f(x−) Æ; (2) ^8 Z δ 0 f(x + u) − f(x+) u du, Z δ 0 f(x − u) − f(x−) u du /E, f $ Fourier cIÆ( x E f(x+) + f(x−) 2 . ]9C Riemann-Lebesgue , }a$"PI 1 u − 1 2sin u 2 Æ [0, δ] 9$Æup. a^}{@QG*of}, @*o/0I C+E$. 7S 1 ; f C)Æ [a, b] 9$PI, 5MÆ [a, b] $Y8 a = t0 < t1 < · · · < tm = b, @#Æ{@ [ti−1, ti ] (i = 1, 2, · · · , m) 9)$PI fi(x) = f(ti−1+), x = ti−1 f(x), x ∈ (ti−1, ti) f(ti−), x = ti 6
都例[ti-1,ti]上的用微函数,则称f例分段用微函数定理2设f例周期为2元的一使分段用微函数,则VE[-元,元],f的Fourier级数在r处论则到(f(r+)+f(r-))1证明由前致的计算以下,在[0,]上的在续以下Riemann-Lebesgueu2sin"引理有" f(r+u)+ f(r -u) sin(n +)u1limlim Sn(r)=a2sin8元** f(a+u) + f(a-u) sin(n +limludu22u8T1f(α+u)-f(r_)(f(r+)+ f(r_) + limsin(n+uduu11f(-)-f(+)1).sin(n++ lim.udu2T(f(+) + f(r_),最后的等解例因为, 如果于 分段用微 则 (a+u)-(-) 和 (α-u)-(α-)关于u例分段在续(用积)的,从而用以应用Riemann-Lebesgue引理前节例1和例2都满足上述定理的条件,因此,在例1中取=1一得到 sin(2k +1)K42k + 1k-0在例2中取a=0一得到元2(-1)k1:212下致接着以一些例子例1足函数f()=cosμa,[,]的Fourier展因(μ不例整数)解绝f延拓为R上以2元为周期的周期函数,这例周函数,因此bk=07
+C [ti−1, ti ] 9$[PI, f C8-[PI. 7B 2 ; f C!$\ 2π ${@8-[PI, ∀ x ∈ [−π, π], f $ Fourier cIÆ x E" 1 2 (f(x+) + f(x−)). XF ($dM}a 1 u − 1 2sin u 2 Æ [0, δ] 9$Æu}a Riemann-Lebesgue limn→∞ Sn(x) = limn→∞ 1 π Z π π f(x + u) + f(x − u) 2 · sin(n + 1 2 )u sin u 2 du = limn→∞ 1 π Z π 0 f(x + u) + f(x − u) 2u · sin(n + 1 2 )udu = 1 2 (f(x+) + f(x−) + limn→∞ 1 π Z π 0 1 2 · f(x + u) − f(x−) u sin(n + 1 2 )udu + limn→∞ 1 π Z π 0 1 2 · f(x − u) − f(x+) u · sin(n + 1 2 )udu = 1 2 (f(x+) + f(x−)). ,W$%AC\, 5M f 8-[, f(x + u) − f(x−) u R f(x − u) − f(x−) u H u C8-Æu (^) $, 1} Riemann-Lebesgue . (t 1 R 2 ++9H) $Ul, , Æ 1 - x = 1 {#" π 4 = X∞ k=0 sin(2k + 1) 2k + 1 , Æ 2 - x = 0 {#" π 2 12 = X∞ k=1 (−1)k · 1 k 2 . ar&}{m(. C 1 +PI f(x) = cos µx, x ∈ [−π, π] $ Fourier (µ CI). A f wY\ R 9} 2π \!$$!$PI, C!PI, bk = 0. 7
而2Tcos μur·coskrdra元Jo1[cos(μ- k)r +cos(μ + k)a]dc元sin(μ-k)sin(μ+k)元2μ(-1)ksinμμ2 - k;2μ-kTμ+k元8012μsinμT171)"cosnacOSuT2μ2元-n2μ2n=1A2μsinμT11>→COSμT2μ2-n2元n=i1212μ1>cot-2/2Tn=iu-n2当0≤μ≤g<1时,上解关变μ一大论则,们而用判项积分r4)dμ=1og(1-(cotμ --n2TLTn=这就得到sin元的下致的展因解,有意数的例它和开解分研十分类推2)(1-%)sin = (1 - )(1~就得到Wallis公解部上解中振=2n2n"=1122n+1 2n -1n-1是2类推地,有2sinμT(-1)n-1 .nsinna>sinpr:μ2-n2Tn=1如果一个函数仅部(0,元)上且绝,敛我只用以明先将它延拓为偶期为2元的函数,然同步对Fourier展因。常可的延拓有奇延拓和周延拓,即分别延拓为奇函数和周函数8
1 ak = 2 π Z π 0 cos µx · cos kxdx = 1 π Z π 0 [cos(µ − k)x + cos(µ + k)x]dx = 1 π sin(µ − k)π µ − k + sin(µ + k)π µ + k = 2µ(−1)k π sin µπ µ2 − k 2 ⇒ cos µx = 2µ sin µπ π 1 2µ2 + X∞ n=1 (−1)n · 1 µ2 − n2 cos nx! ⇒ cos µπ = 2µ sin µπ π 1 2µ2 + X∞ n=1 1 µ2 − n2 ! ⇒ cot πµ = 2µ π 1 2µ2 + X∞ n=1 1 µ2 − n2 ! . 0 ≤ µ ≤ q < 1 =, 9AH µ {E, 1"i^8 Z x 0 (cotπµ − 1 πµ )dµ = 1 π X∞ n=1 log(1 − x 2 n2 ) {#" sin πx $a$A, K$CNRA8v<8L: sin πx = πx(1 − x 2 1 2 )(1 − x 2 2 2 ) · (1 − x 2 n2 )· · · Æ9A x = 1 2 {#" Wallis DA: π 2 = Y∞ n=1 2n 2n − 1 · 2n 2n + 1 . C 2 L', sin µx = − 2sin µπ π X∞ n=1 (−1)n−1 · n sin nx µ2 − n2 . 5M{@PIwÆ (0, π) 9), ^}FbnNwY\!$\ 2π $ PI, 1W / Fourier . $wY&wYR!wY, b8 wY\& PIR!PI. 8