A的性质: (1)幂等性:42=A1 (2)分离性:A14=0(≠j (3)可加性:∑4=E 证 n 1 PP=( n=∑=∑4=En nn
的性质: Ai Ai = Ai 2 (1) 幂等性: (2) A A 0 (i j) 分离性: i j = n n i Ai = E =1 (3) 可加性: 证: = − T n T T n PP v v v 2 1 1 2 1 ( , , , ) = = n i T i i v 1 n n i = Ai = E =1
定理4设A∈C,它有k个相异特征值 ;(=1,2,…,k),则A是单纯矩阵的充要 条件是存在个矩阵42(i=1,2,…,k)满足 J 0 L≠J (2)∑4=En(3)A=∑44
设AC nn ,它有k个相异特征值 = = k i A i Ai 1 (3) 定理4 i (i = 1,2, ,k), 则A是单纯矩阵的充要 条件是存在k个矩阵Ai (i = 1,2, ,k)满 足 = = i j A i j A A i i j 0 (1) n k i Ai = E =1 (2)
必要性是单纯矩阵A=∑lB1 A=∑4∑Bn令4=∑B A=∑4(3) Bii Blk Bi i=l,j=k 0i≠l或j≠k
必要性 A是单纯矩阵 = = n i i Bi A l 1 = = = k i r j i i j i A B 1 1 = = i r j Ai Bij 1 令 (3) 1 = = k i A i Ai = = = i l j k B i l j k B B i j i j l k 0 或