(二)基本性质 F(dx= F(x+C 2.(I f(xdx) '=f(x) 3. dd f()dx))=f(x)dx 4. kf(x)dx=k f(x)dx, k*0 5.(f(x)±g(x)dbx=|f(x)dx±g(x)d 2021/2/20 6
2021/2/20 16 (二)基本性质 1. F'(x)dx = F(x) +C 2.( f (x)dx)'= f (x) 3. d( f (x)dx)) = f (x)dx 4. k f (x)dx = k f (x)dx , k 0 5. ( f (x) g(x))dx = f (x)dx g(x)dx
(三)基本公式 1.x dx xa+1+C(a≠-1) 1+c lx=In/ x+C 3.e*dx=e*+C a ax C(a>0,a≠1) 5. sin xdx=-coSx+C 6. cos xdx =sinx+C 2021/2/20
2021/2/20 17 (三)基本公式 ( 1) 1 1 1. 1 + − + = + x dx x C dx x C x = + ln 1 2. e dx e C x x = + 3. 5. sin xdx = −cos x +C 6. cos xdx = sin x +C ( 0, 1) ln 1 4. = + a C a a a a dx x x