第一节,连续时间金融的基础数学知识 第二节, Merton(1969)的开创性论文; 第三节,讲解 Black-Scholes—模型; 第四节,简单回顾最新连续时间金融理论研究
文件格式: PPT大小: 89.5KB页数: 26
一、对风险的一般认识: 二、经济系统中状态变量的事前不确定性 三、对风险的厌恶引发投资人的投资组合的分散化
文件格式: PPT大小: 116KB页数: 20
一、多项式整除的概念 1.多项式的整除性 设f(x),()F[x,若存在h(x)∈F[x,使 f(x)=g(x)h(x),则说g(x)整除f(x),记为:
文件格式: PPT大小: 482.5KB页数: 12
一、多项式的概念 中学多项式的定义:n个单项式(不含加法或减 法运算的整式)的代数和叫多项式。 例:4a+3b,3x2+2x+1,y- 在多项式中,每个单项式叫做多项式的项。这是 形式表达式。 后来又把多项式定义为R上的函数:
文件格式: PPT大小: 422KB页数: 14
1.1数环和数域 研究数学问题常常需要明确规定所考虑的数的 范围,学习数学也是如此。 比如,先学习自然数,然后整数,再正有理数、 有理数、实数、复数。再比如讨论多项式的因式分 解、方程的根的情况,都跟数的范围有关
文件格式: PPT大小: 300.5KB页数: 10
对称多项式是多元多项式中常见的一种,也是一 类比较重要的多元多项式,它的应用比较广泛,对称 多项式的来源之一以及它应用的一个重要方面,是一 元多项式根的研究,下面我们从一元多项式的根与系 数的关系谈起
文件格式: PPT大小: 522KB页数: 20
前面介绍了一元多项式的基本性质,但是除了 一元多项式外;还有含多个文字的多项式,即多元 多项式,如x2-y2+2xy,x3+y3+3x2y+3xy2 下面简单介绍有关多元多项式的一些概念
文件格式: PPT大小: 527KB页数: 20
本节讨论有理数域上多项式的可约性,以及如 何求Q上多项式的有理根,由于f(x)与qf(x)在 Q[x]上的可约性相同。因此讨论f(x)在Q上的可约 性可转化为求整系数多项式在Q上的可约性
文件格式: PPT大小: 457KB页数: 15
一、C上多项式 对于F[x]上的多项式f(x),它在F上未必有根, 那么它在C上是否有根? 定理1.8.1(代数基本定理): 每一个次数大于零的多项式在复数域上至多有 个根。 定理1.8.2:
文件格式: PPT大小: 444KB页数: 16
一、多项式函数 1.定义:设f(x)=a+ax+…+anxn∈F[x],对 Vc∈F,数f(c)=a+ac++anc∈F称为当 x=c时f(x)的值,若f(c)=0,则称c为f(x)在 F中的根或零点。 2.定义(多项式函数):设f(x)∈F[x],对 Vc∈F,作映射f:
文件格式: PPT大小: 566KB页数: 17










