偏导数 定义 12.1.1 设 D 2 R 为开集, z f x y x y = ( , ), ( , ) D 是定义在 D 上的二元函数,( , ) 0 0 x y D 为一定点
文件格式: PPT大小: 1.67MB页数: 56
紧集上的连续映射 为了将一元连续函数在闭区间上的重要性质推广到多元连续函 数,为此先定义多元函数在点集的边界点连续的概念。 定义 11.3.1 设点集 K n R ,f : K→ m R 为映射(向量值函数), x K 0
文件格式: PPT大小: 377KB页数: 15
多元函数 定义11.2.1设D是R”上的点集,D到R的映射 f:D→R x}2 称为n元函数,记为z=f(x)。这时,D称为f的定义域,f(D) z∈R|z=f(x),x∈D}称为f的值域,={(x,z)∈R|z=f(x),x∈D称为 f的图像
文件格式: PPT大小: 917.5KB页数: 33
到目前为止, 我们所学习的只是一元函数的分析性质。但在现实 生活中,除了非常简单的情况之外,可以仅用一个自变量和一个因变 量的变化关系来刻画的问题可以说是非常少的。比如像物理学中研究 质点运动这么一个相对较为容易的问题,也需要用到确定空间位置的 三个坐标变量 x、y、z 和一个时间变量 t 以及多个函数值(如位置、 速度、加速度、动量等),更不用说在各种不同的学科研究中会遇到 更为复杂的问题。这种多个自变量和多个因变量的变化关系,反映到 数学上就是多元函数(或多元函数组,即向量值函数)
文件格式: PPT大小: 1.2MB页数: 40
定义 10.5.1 设函数 f (x)在闭区间[a, b]上有定义,如果存在多项 式序列{Pn (x)}在[a, b] 上一致收敛于 f (x),则称 f (x)在这闭区间上 可以用多项式一致逼近
文件格式: PPT大小: 227KB页数: 9
Taylor级数与余项公式 假设函数f(x)在x的某个邻域O(xo,r)可表示成幂级数 (x)=a, (x-x)\(xo,r), n=0 即∑an(x-x)在O(xo,r)上的和函数为f(x)
文件格式: PPT大小: 1.29MB页数: 39
一致收敛的判别 定理10.2.1(函数项级数一致收敛的 Cauchy收敛原理)函数 项级数∑un(x)在D上一致收敛的充分必要条件是:对于任意给定的 n=1 >0,存在正整数N=N(),使 un+(x)+un2(x)++um(x)|n>N与一切x∈D成立
文件格式: PPT大小: 1.46MB页数: 44
集合论的基础是由德国数学家 Cantor 在 19 世纪 70 年代奠定 的。 集合:指具有某种特定性质的具体的或抽象的对象汇集成的总 体。 这些具体的或抽象的对象称为该集合的元素
文件格式: PPT大小: 886.5KB页数: 29










