⑩天掌 Teaching Plan on Advanced Mathematics o 2.存在条件: 当P(x,y,Q(x,y)在光滑曲线弧L上连续时第二类曲线积分存在 3.组合形式: 「P(x,lk+(x,y)d JPx)+xy)F函 其中F=P+,d=dxi+d!y tianjin polytechnic dmivendity
Tianjin Polytechnic University Teaching Plan on Advanced Mathematics 2.存在条件: 当P(x, y), Q(x, y)在光滑曲线弧L上连续时, 第二类曲线积分存在. 3.组合形式: = + + L L L P x y dx Q x y dy P x y dx Q x y dy ( , ) ( , ) ( , ) ( , ) F Pi Qj, ds dxi dyj. 其中 = + = + . = L F ds
⑩天掌 Teaching Plan on Advanced Mathematics o 4.推广: 空间有向曲线弧rPax+Q+R P(x,y,2)dx=lim P(Si mi,5:)Ax, →0 =」 「Q(x,y,x)=lm∑Q(51,n, 入→0 R(x,y,x)k=im∑R(31,n,)△x7 →0 tianjin polytechnic dmivendity
Tianjin Polytechnic University Teaching Plan on Advanced Mathematics 4.推广: 空间有向曲线弧 ( , , ) lim ( , , ) . 1 0 i i i n i P x y z dx = P i x = → . Pdx + Qdy + Rdz ( , , ) lim ( , , ) . 1 0 i i i n i i Q x y z dy = Q y = → ( , , ) lim ( , , ) . 1 0 i i i n i i R x y z dz = R z = →
⑩天掌 Teaching Plan on Advanced Mathematics o 5.性质 (1)如果把L分成L和L2,则 P+Q小=,Pd+g!+,P+Q小 (2)设L是有向曲线弧-L是与方向相反的有向曲线弧则 ∫.P(x,pydt+(x,y)=P(x,y+(x,y 即对坐标的曲线积分与曲线的方向有关 tianjin polytechnic dmivendity
Tianjin Polytechnic University Teaching Plan on Advanced Mathematics 5.性质 . (1) , 1 2 1 2 + = + + + L L L Pdx Qdy Pdx Qdy Pdx Qdy 如果把L分 成L 和L 则 (2) 设L是有向曲线弧,−L是与L方向相反的有向曲线弧, 则 即对坐标的曲线积分与曲线的方向有关. + = − + −L L P(x, y)dx Q(x, y)dy P(x, y)dx Q(x, y)dy