⑩串紫学 Teaching Plan on Advanced Mathematics 第三节分部积分法 设函数u=u(x)和v=v(x)具有连续导数, uv=u'v+uv uv=(uv)-u'v uv'cx=uv-Ju'vdx 「uby=uv
Tianjin Polytechnic University Teaching Plan on Advanced Mathematics 设函数 和 具有连续导数, uv dx uv u vdx, = − udv uv vdu. = − u = u(x) v = v( x) (uv)'= u'v + uv' uv'= (uv)'−u'v 第三节 分部积分法
⑩串紫学 Teaching Plan on Advanced Mathematics 注 解 ①显然,L,v选择不当,积分更难进行 ②若被积函数是幂函数和正(余)弦函数或幂函数和指数函 数的乘积,就考虑设幂函数为l,,使其降幂一次(假定幂 指数是正整数) ③若被积函数是幂函数和对数函数或幂函数和反三角函 数的乘积,就考虑设对数函数或反三角函数为
Tianjin Polytechnic University Teaching Plan on Advanced Mathematics 显然, u,v 选择不当,积分更难进行. 若被积函数是幂函数和正(余)弦函数或幂函数和指数函 数的乘积,就考虑设幂函数为 , 使其降幂一次(假定幂 指数是正整数) u, ① ② 若被积函数是幂函数和对数函数或幂函数和反三角函 数的乘积,就考虑设对数函数或反三角函数为 . ③ u 注 解
⑩串紫学 Teaching Plan on Advanced Mathematics 例1求积分xdk 解(一)令u=cosx,xt=a2=h xcos xdx =cosx+ SInd dx (二)令u=x, sxd= d sin=b xcos xdx=lxdsinx=xsinx-sinxdx =sinx+cosx+C 例2求积分「x2ex 解=x,eI=le=加h, xe dx=xte xe dx (再次使用分部积分法)=X,eb= =x2e2-2(xe-e2)+C
Tianjin Polytechnic University Teaching Plan on Advanced Mathematics cos . x xdx 解 令 u = cos x, xdx = dx = dv 2 2 1 xcos xdx = + xdx x x x sin 2 cos 2 2 2 (二)令 u = x, cos xdx = d sin x = dv xcos xdx = xd sin x = xsin x − sin xdx = xsin x +cos x +C. 例1 求积分 . 2 x e dx x 解 , 2 u = x e dx de dv, x x = = x e dx 2 x = x e − xe dx x x 2 2 2( ) . 2 x e xe e C x x x = − − + (再次使用分部积分法) u = x, e dx dv x = 例2 求积分 (一)
⑩串紫学 Teaching Plan on Advanced Mathematics 例3求积分 xarctanxd 解令u= arctan,xr=dx 2 2 xarctanxdx =— arctan d(arctan) 2 2 2 arctan 2 21+x arctan-9·(1 2 21+x =arctanx-(x-arctan x)+C. 2
Tianjin Polytechnic University Teaching Plan on Advanced Mathematics 例3 求积分 arctan . x xdx 解 令 u = arctan x , dv x xdx = d = 2 2 xarctan xdx (arctan ) 2 arctan 2 2 2 d x x x x = − dx x x x x 2 2 2 1 1 2 arctan 2 + = − dx x x x ) 1 1 (1 2 1 arctan 2 2 2 + = − − ( arctan ) . 2 1 arctan 2 2 x x x C x = − − +
⑩串紫学 Teaching Plan on Advanced Mathematics 例4求积分x3lnxx 解 u=nx xdx= d ∫x3 In xdx =-xtlnx--x+ AC =-x Inx 16
Tianjin Polytechnic University Teaching Plan on Advanced Mathematics 例4 求积分 ln . 3 x xdx 解 u = ln x, , 4 4 3 dv x x dx = d = x ln xdx 3 = x x − x dx 4 3 4 1 ln 4 1 . 16 1 ln 4 1 4 4 = x x − x + C