.30.第2章极限论2n-3)2n-1+(-)+()+…+(α元12n2n2+11)2n-1-++(#++22-12m+1所以得到a,=1+(1-1/2"-1)/(1-1/2)-(2n—1)/2".从而知a,→3(n-→o0)(3)因为[(b-1)+(6-1)+*+(bm—1)]an=6-1=1+(bn+1)+(6+b,+1)++(bm-1+6m-2++1),所以得到a,→1十+2十."十m=m(m+1)/2(n-00).例2.1.12试求下述数列(a,)的极限:(1)a,=2(6+号)(n = 1,2,...)n(2) a, = (1 +)(b, = 1,b+1 = k(1+b,).解(1)因为a, = n=1 . 6 + n(n=1)b+1+2* +*+(n-1)2n2n3n= n(n+1)(2n+1)/6)所以得到an→62+b+1/3.((2)因为b,=k+k(k—1)+…+k(k—1)(k—2).2·1,所以(1+)-4,n!(1+1+++↓+.+lima,--lim(3!21例1.2.13简化下述数列(a,)的通项表达式:11(1)a.(2) a,=(2k-1)(2k +1).k(k+1)(h+2)111(3)an+/33+V52n-1+2n解(1)注意(2k-1)(2k+1)2(2k-1-2k+1)111Y1(2) 注意(k+1)(k+2)=2kk+152k+212n+1-/2n-1(3)注意22n-1+V2n+1例2.1.14试给下述递推式数列转型:
2.1数列极限以及求极限的方法31:+1n1(1) an+1an-1(n=2,3,...)n(2) +-=(2+2)a, (n=1,2,).n(3)(n+2)ant,=na,+1(n=1,2,...).解(1)改写原式为an+1α,=—an—an-1)/n,则(ar-1a-2)an=an-1n-i1=a +(a2a)(1+"+(-1)-221+3!(n-1)!)(2)原式可改写为1antla+ = "±12a, 1,=20n+i'n+1nn2n= 2-nan2-(n+1) αm+1(n E N).n+in+1n从而令b,=2-%㎡,则原式转型为n2-nbu+1=b,(n E N).n+1(3)以(n十1)乘等式两端,且令b,=n(n十1)a,则有bn+1=b,+(n+1)=bm-+n+(n+1)=(n+1)+n+...+2+b=(n+1)(n+2)/2+b-1.从而知a+1=1/2+(2a-1)/(n+1)(n+2).即(nE N).a,=(2ai-1)/n(n+1)+1/2注最简单的转型手段有:aia2...an1.相邻比:a,1ayan-2.相邻差:a,=(a—an-1)+(a-1—an-2)+.+(a2-a)十a13.和式差:a,=S,-S-1(S.=ai十a2十十an).例如S,=a(nEN),则在n≥2时,有am-S,-S-1-S_n-l S-1nnnn77此外,对递推式数列的表达形式如;(1)设A,B>0且ai>0,a+1=Aan+B/a(nEN);(2)设A,B>0且a>0,an+1=an/(A+Ba,)(nEN),则可用倒除法直接转型为最简典式:
·32·第2章极限论(1')因为VAa1a+1=VBVA(nEN),Aa./VBVB)(nEN)所以令b,=/Aan/VB,则得bh+1=A(b,(2')因为11=B+A(nEN),a=B+A/a,'an+1a.所以令b,=1/an,则得b+1=B+Ab,(nEN).例2.1.15化简下述数列(a,)的表达式:_6+6?+..+6"b" (nEN;bE(1,2,.,9)).(1)a.10"(2)an=(1·1!+2.2!+...+n·n!)/(n+1)! (nEN).解(1)关键是化简分子形式:6+62+.+6"=6(1+11+111+..+11..1)=6(10r-1+2.10-2+...+n.10)=6[(1+10+.+10)+1+10+.+102)++(1+10)+17(10"-1±10-1-1L102-1+10-19999=b[10(10"—1)—n]/81.(2)注意到k·k!=(k+1)!一k!(kEN),故(n+1)!-1(nEN).an(n+1)!例2.1.16试论下列数列(a,的敛散性:(1)已知|αl<1,且满足lim(a—αan-1)=(2)an+1=b/a,-1(nEN,b>0,a,<0)(3)an+1=1/(m+1ma,)(m,nEN)解(1)(i)若l=0,则易知a-→0(n-00).(i)现在令A=l/(1—α),b,=a,A,则得lim(anaan-)=(1-α)A,lim(b,-ob,-)=0.由(i)知b,→0(n→),即a-→A=l/(1—α)(2)(i)如果(an)是收敛列,且设an—a(n→oo),则由a2十a—b=0,可知a=(1±/1+46)/2.令-1+V1+46-1-V1+46B=222我们有
2.1数列极限以及求极限的方法·33·b-an-aab1-ant)anan—(1+α)(aα)= a-(1 +a)(a, α) -α(1+a)anan注意到α十β=-1,故得an+1一α=(a,—α)/am类似地,可推知an+1—β-α(anβ)/an.从而有ani-αanB-.arp-βa.atl因为|α/β=α/(1十α)<1,所以(α/β)"-1→+0(n-→0),最后得liman=β=(1-/1+46)/2.(3)应用归纳法:已知(m2-1 - 1) - (m2-1 -m)ai ,a2=(m+1)-ma(m2-1)-(m2-m)al假定对k,我们有(m-1 -1) - (m-l -m)ala(mk-1)-(mk-m)al则对k十1可得1aHI=(m+1)-ma(m+ 1) -m (ml-1)-(ml-m)ai (m-1)-(m-m)al(mk-1)-(m-m)al(m+1)(m-1)-(m+1)(mk-m)a,=-(m*-m)+m(mk-1-m)al(m* -1)-(m*-m)ai(m+1-1)-(m*)-m)al因此,可得(根据归纳法)(m-1 - 1) - (m1 -m)aj.an(m"-1)-(m"-m)al从而知当a,=(m一1)/(m一m)时,此数列不存在,当a=1时,有a=1(nEN);当ai≠1时,有a,→1/m(n→).例2.1.17试求下述数列(a,/的通项表达式:(1) an+2=(an·an+1)/(2a,—an+1)(n=1,2,*.)(2)a,=4"(1-b,)),其中bu+=/(1+b,)/2(nEN),-1<b,<1aja2-.又解(1)as=2a,-a2aa2azasaja22a.a=2a2-a2a,2a,-a2a2
第2章极限论34aja2a1-a2a,az2a1az3a2a1-2a23a1-2a2假定a,a2a,a2ak=a+1(k-1)a-(k-2)az'ka,-(k-1)az'则不难推出(略)a,a2a+2=(k+1)ai-ka2从而根据归纳法可知,an2aa2/[(n十1)a,—naz](2)令b,=cos0(0<<元),则b2=cos(0/2),AA(1+cosb3=b.-从而可知a,= 4"(1cos(0/2"))=4"(1-cos(/2")(1±cos(/2"))1—cos(/2")024"sin2(0/2")(sin(0/2"))1+cos(0/2")0/2"1+cos(0/2")例2.1.18试证明下列命题:(1)设定义在[o,1]上的f(α)有反函数f—1(α),且R(f)=[0,1].若有f(2a-f())=(0<<1),则f()=.(2)设k为正整数.试定6值,使得满足等式(am+1+ar-1)/2=ban(n=2,3,...)的数列(a,)有周期k,即an+=a(nEN).证明(1)因为f-1(α)=2一f(α),所以我们有f(α)r=r-f-1l(r)(0≤≤1).现在对任意的aE[o,],令r=f(-,)(nEN),则=+n-X)Cn213-1T.,-2由于—<1,故|—1/n.从而知f()=o,这说明f()=(2)采用矩阵表示,我们有R4+1A-0从而只需指出A=因为A的特征多项式为入2一2b入十1,所以A的特征值为b士V62—1.注意到10A4的必要条件是:A的特征值为单位的第k次根