01-21B知D则2A+Ag-d+A=0-131
称为n阶范德蒙证明n(n>1)阶行列式例-德行列式a,a2anaza.a?D(aj,a....an)=:1.-ale"~13A11所有右边(a, -a)(a, -a)...(a, -a)元素减去(ag -a,)...(an -a,)左边元素的乘积记为II (a,-a,).(an-an-1)n≥j>i≥1证利用数学归纳法,n=2时结论成立,DII (a,-a,).1 =2≥j>i≥1II(a,-a,)假设对n一1时结论成立,即D(aj,a,……an-)=n-12j>i21
例 证明n(n>1)阶行列式 1 2 2 2 2 1 2 1 2 1 1 1 1 2 1 1 1 ( , ,., ) n n n n n n n a a a D a a a a a a a a a 所有右边 元素减去 左边元素 的乘积 2 1 3 1 1 3 2 2 1 ( )( ).( ) ( ).( ) . . ( ) n n n n a a a a a a a a a a a a 1 ( ). j i n j i a a 记为 称为n阶范德蒙 德行列式 证 利用数学归纳法,n= 2时结论成立, 2 2 1 1 2 2 1 1 1 ( ). j i j i D a a a a a a 假设对n-1时结论成立,即 1 2 1 1 1 ( , , ., ) ( ). n j i n j i D a a a a a
则n阶范德蒙德行列式111:11R,-a,Ru-1...0a,-ana,-anaiazcanR.-1 -a,R.-20a, -a,ana?a,-a,ana?a.··......·.R,-a.R11-23431-0n-134aa1aaP111按n列展开,a,an-l2252并提取公因子(-1)*"(a,-a,)(a,-an).(an-1-anan-1........34n-2an-1(-1)I+"(a, - a,)(a, - a,).. (an- - an) D(a,,a2....an-1)-(-1)*"(a,-a,)(a, -a,) (an--a.) II (a,-a,).n-1≥j>i21-II (a,-a,).nzj>i≥l
则n阶范德蒙德行列式 1 1 2 1 2 2 2 1 1 2 2 1 2 1 2 2 1 1 1 2 2 1 1 1 0 0 0 n n n n n n n n n n n n n n n n n R a R a a a a R a R a a a a a a R a R a a a a a a 1 2 1 1+n 2 2 2 1 2 1 1 2 1 2 2 2 1 2 1 1 1 1 n (-1) ( )( ) ( ) n n n n n n n n n n a a a a a a a a a a a a a a a 按 列展开, 并提取公因子 1+n 1 2 1 1 2 1 (-1) ( )( ) ( ) ( , , ., ) n n n n n a a a a a a D a a a 1+n 1 2 1 1 1 (-1) ( )( ) ( ) ( ). n n n n j i n j i a a a a a a a a 1 ( ). j i n j i a a 1 2 2 2 2 1 2 1 1 1 1 2 1 1 1 n n n n n n a a a a a a a a a