第七章线性变换 §1线性变换的定义 线性变换的定义 线性空间V到自身的映射称为V的一个变换 定义1线性空间的一个变换星称为线性变换,如果对于V中任意的元 素a,B和数域P中任意数k,都有 A(a+B)=A(a)+(B); 用(ka)=k(a) (1) 般用花体拉丁字母星,s,…表示V的线性变换,A(a减或Aa代表元素a在变 换下的像 定义中等式(1)所表示的性质,有时也说成线性变换保持向量的加法与数量 乘法 例1.平面上的向量构成实数域上的二维线性空间把平面围绕坐标原点按反 时钟方向旋转θ角,就是一个线性变换,用。表示如果平面上一个向量a在直 角坐标系下的坐标是(x,y),那么像9。(a)的坐标,即a旋转θ角之后的坐标 (x',y)是按照公式 0 -sin 6 sin 6 cose 来计算的.同样空间中绕轴的旋转也是一个线性变换 例2设a是几何空间中一固定非零向量,把每个向量ξ变到它在a上的内射 影的变换也是一个线性变换,以∏表示它用公式表示就是 ∏2() (a,5 aa 这里(a,5,(a,a)表示内积
第七章 线性变换 §1 线性变换的定义 一、线性变换的定义 线性空间 V 到自身的映射称为 V 的一个变换. 定义 1 线性空间 V 的一个变换 A 称为线性变换,如果对于 V 中任意的元 素 , 和数域 P 中任意数 k ,都有 A ( + )=A ( )+A ( ); A( k )=A k ( ). (1) 一般用花体拉丁字母 A,B,…表示 V 的线性变换,A ( )或 A 代表元素 在变 换 A 下的像. 定义中等式(1)所表示的性质,有时也说成线性变换保持向量的加法与数量 乘法. 例 1.平面上的向量构成实数域上的二维线性空间.把平面围绕坐标原点按反 时钟方向旋转 角,就是一个线性变换,用 ℐ 表示.如果平面上一个向量 在直 角坐标系下的坐标是 (x, y) ,那么像 ℐ ( )的坐标,即 旋转 角之后的坐标 (x , y ) 是按照公式 − = y x y x sin cos cos sin . 来计算的.同样空间中绕轴的旋转也是一个线性变换. 例 2 设 是几何空间中一固定非零向量,把每个向量 变到它在 上的内射 影的变换也是一个线性变换,以 表示它.用公式表示就是 ( , ) ( , ) ( ) = . 这里 (, ),(,) 表示内积
例3线性空间V中的恒等变换或称单位变换,即 E(a)=a(a∈) 以及零变换O,即 0(a)=0(a∈) 都是线性变换 例4设V是数域P上的线性空间,k是P中的某个数,定义V的变换如下: a∈p 这是一个线性变换,称为由数k决定的数乘变换,可用K表示显然当k=1时, 便得恒等变换,当k=0时,便得零变换 例5在线性空间Px]或者Px]中,求微商是一个线性变换这个变换通常用 D代表,即 (f(x))=f 例6定义在闭区间[a,b]上的全体连续函数组成实数域上一线性空间,以 C(a,b)代表在这个空间中变换 y(f(x))= f(r)dt 是一线性变换 二、线性变换的简单性质: 1.设星是V的线性变换,则A(0)=0,用(-a)=-星(a). 2.线性变换保持线性组合与线性关系式不变换句话说,如果β是 a1,a2,…;a,的线性组合 B=k,a+k,a 那么经过线性变换履之后,A(B)是A(a1)(ax2)…A(a,)同样的线性组合: A(B)=kA(a1)+k2(a2)+…+k,月(a,)
例 3 线性空间 V 中的恒等变换或称单位变换 E,即 E () = ( V ) 以及零变换 ℴ,即 ℴ () = 0 ( V) 都是线性变换. 例 4 设 V 是数域 P 上的线性空间, k 是 P 中的某个数,定义 V 的变换如下: → k , V . 这是一个线性变换,称为由数 k 决定的数乘变换,可用 K 表示.显然当 k =1 时, 便得恒等变换,当 k = 0 时,便得零变换. 例 5 在线性空间 P[x] 或者 n P[x] 中,求微商是一个线性变换.这个变换通常用 D 代表,即 D( f (x) )= f (x) . 例 6 定义在闭区间 a,b 上的全体连续函数组成实数域上一线性空间,以 C(a,b) 代表.在这个空间中变换 ℐ( f (x) )= x a f (t)dt 是一线性变换. 二、线性变换的简单性质: 1. 设 A 是 V 的线性变换,则 A (0)=0, A (− )=-A ( ). 2. 线性变 换保持 线性组 合与线 性关系 式不变 .换句话 说,如 果 是 r , , , 1 2 的线性组合: r r = k11 + k22 ++ k , 那么经过线性变换 A 之后,A ( )是 A ( 1 ),A ( 2 ),…, A ( r )同样的线性组合: A ( )= 1 k A ( 1 )+ 2 k A ( 2 )+…+ r k A ( r )
又如果a,a2…a之间有一线性关系式 ka1+k2a2+…+ka1=0 那么它们的像之间也有同样的关系式 k1(a1)+k2A(a2)+…+k,(a,)=0 3.线性变换把线性相关的向量组变成线性相关的向量组
又如果 r , , , 1 2 之间有一线性关系式 k11 + k22 ++ krr = 0 那么它们的像之间也有同样的关系式 1 k A ( 1 )+ 2 k A ( 2 )+…+ r k A ( r )=0. 3. 线性变换把线性相关的向量组变成线性相关的向量组
§2线性变换的运算 、线性变换的乘法 设用,是线性空间V的两个线性变换,定义它们的乘积为 (B(a)=凡,B(a)(a∈V) 则线性变换的乘积也是线性变换 线性变换的乘法适合结合律,即 CAC=A(BC) 但线性变换的乘法不适合交换律例如,在实数域上的线性空间中,线性变换 (f(x))=f(x) 9(f(x)=[f() 的乘积o乎=E,但一般∮D≠E 对于任意线性变换A,都有 =E=月 二、线性变换的加法 设是线性空间V的两个线性变换,定义它们的和A+B为 A+B(a)=A(a)+B(a (a∈V) 则线性变换的和还是线性变换 线性变换的加法适合结合律与交换律,即 +B=B+ 对于加法,零变换O与所有线性变换A的和仍等于A A+O=闭 对于每个线性变换A,可以定义它的负变换(-用): A)(a)=-A(a)(a∈V
§2 线性变换的运算 一、线性变换的乘法 设 A,,B 是线性空间 V 的两个线性变换,定义它们的乘积为. (AB)( )= A,(B ( )) ( V ). 则线性变换的乘积也是线性变换. 线性变换的乘法适合结合律,即 (AB)C=A(BC). 但线性变换的乘法不适合交换律.例如,在实数域上的线性空间中,线性变换 D( f (x) )= f (x) . ℐ( f (x) )= x a f (t)dt 的乘积 D ℐ=ℰ,但一般 ℐD≠ℰ. 对于任意线性变换 A,都有 Aℰ=ℰA = A. 二、线性变换的加法 设 A,B 是线性空间 V 的两个线性变换,定义它们的和 A+B 为 (A+B)( )= A ( )+B ( ) ( V ). 则线性变换的和还是线性变换. 线性变换的加法适合结合律与交换律,即 A+(B+C)=(A+B)+C. A+B=B+A. 对于加法,零变换 ℴ 与所有线性变换 A 的和仍等于 A: A+ℴ=A. 对于每个线性变换 A,可以定义它的负变换(-A): (-A)( )=- A ( ) ( V )
则负变换(-)也是线性变换,且 +(-团)= 线性变换的乘法对加法有左右分配律,即 A(B+C=AB+AC (B+C)A=BA+CA 三、线性变换的数量乘法 数域P中的数与线性变换A的数量乘法定义为 kA=KA k(a)=K((a)=(a), 当然A还是线性变换线性变换的数量乘法适合以下的规律: (kDA=k(1A) (k+D)=k A+lA k(团+B)=kA+kB, 1团=星. 线性空间V上全体线性变换,对于如上定义的加法与数量乘法,也构成数域P上 一个线性空间 的变换称为可逆的,如果有V的变换B存在,使 这时,变换a称为A的逆变换,记为A-1.如果线性变换A是可逆的,那么它的 逆变换A-1也是线性变换 既然线性变换的乘法满足结合律,当若干个线性变换A重复相乘时,其最终 结果是完全确定的,与乘法的结合方法无关因此当n个(n是正整数)线性变换 相乘时,就可以用
则负变换(-A)也是线性变换,且 A+(-A)=ℴ. 线性变换的乘法对加法有左右分配律,即 A(B+C)=AB+AC, (B+C)A=BA+CA. 三、线性变换的数量乘法 数域 P 中的数与线性变换 A 的数量乘法定义为 k A =KA 即 k A( )=K(A ( ))=KA ( ), 当然 A 还是线性变换.线性变换的数量乘法适合以下的规律: (kl) A= k ( l A), (k + l) A= k A+ l A, k (A+B)= k A+ k B, 1A=A. 线性空间 V 上全体线性变换,对于如上定义的加法与数量乘法,也构成数域 P 上 一个线性空间. V 的变换 A 称为可逆的,如果有 V 的变换 B 存在,使 AB=BA=E. 这时,变换 B 称为 A 的逆变换,记为 A −1 .如果线性变换 A 是可逆的,那么它的 逆变换 A −1 也是线性变换. 既然线性变换的乘法满足结合律,当若干个线性变换 A 重复相乘时,其最终 结果是完全确定的,与乘法的结合方法无关.因此当 n 个( n 是正整数)线性变换 A 相乘时,就可以用