2界函数y=x4(4∈R) (x+△x)-x △x→>0△xAx>0 △ 等价无穷小替代 △ W △ XX m △ △ lim ux=ux △x→>0
2. 幂函数 x x x x x = → 0 lim x x x x x + − → ( ) lim 0 Q y = x ( R) = → x y x 0 lim x x x x x − + = → 1 1 lim 0 1 1 0 lim − − → = = x x x ( ) −1 = x x 等价无穷小替代
例 (x3)y=3x (x)y=(x2)y =(x)=(-1)x dx(x XX (x)=1·x 0 自变量对其本身的导数为1
( )' 1 1. 1 1 0 = = = − x x x 自变量对其本身的导数为 1 ( ) 1 d d 1 = − x x x 1 1 2 ( 1) − − − = − x = −x , 1 2 x = − ( ) 3 . 3 2 x = x ( ) ( ) 2 1 x = x 2 1 1 2 1 2 1 2 1 − − = x = x , 2 1 x = 例1
3.指数函数y=a(a>0 +△x C Lx Ax→>0△x4x→>0△ x→>0△x △xhn a im C △x→>0 △ (a)=a hn a (e)=e
3. 指数函数 x a a x y x x x x x − = + →0 →0 Q lim lim x x a a x x = → ln lim 0 y = a (a 0) x x a a x x x − = → 1 lim 0 a a x = ln (a ) a ln a x x = ( ) x x e = e
例2 (4)=4h4 bx x ana=ba hn a (a>0、b为常数)
(4 ) = x ( ) = bx a b x b = (a ) ln a ba a b x = ln 4 ln 4 x (( ) ) b x a ( a 0、b 为常数 ) 例2
4.对数函数y=lnx(x>0) △ ln(x+△x)-lnx △x>0△x△x→>0 △x等价无穷小替代 △x △ = im Ax→>0 △x △x→>0 x△ X (In x)
4. 对数函数 x x x x x + − → ln( ) ln lim 0 Q x x x x x 1 lim 0 = = → y = ln x (x 0) = → x y x 0 lim x x x x + = → ln 1 lim 0 1 (ln ) x x = 等价无穷小替代