sint- dt, 求J, xf(x)dx.例4设 f(x)=tsint解国因为没有初等形式的原函数t无法直接求出,f(x),所以采用分部积分法's(x)dx ="(x)d(x)[x] -'ra(n)-) -F(x)de微积分经济数学
例 4 设 求 解 2 1 sin ( ) d , x t f x t t = 10 xf x x ( )d . 因为 t sint没有初等形式的原函数, 无法直接求出 f (x),所以采用分部积分法 10 xf x x ( )d 1 2 0 1 ( )d( ) 2 = f x x 1 2 0 1 ( ) 2 = x f x 1 2 0 1 d ( ) 2 − x f x (1) 21 = f 1 2 0 1 ( )d 2 − x f x x
sintsinf(1) =: f(x) =dt.dt = 0.?2sin xsin xf'(x)2x :x=) -x(x)dxxf(x)dx :2sinx'dx2xsin x'dx2 Jo2J0[cos x*]- -(cos1-1).经济数学微积分
2 1 sin ( ) d , x t f x t t = , 2sin 2 sin ( ) 2 2 2 x x x x x f x = = 1 0 xf x x ( )d (1) 2 1 = f 1 2 0 1 ( )d 2 − x f x x 1 2 0 1 2 sin d 2 = − x x x 1 2 2 0 1 sin d 2 = − x x 1 0 2 cos 2 1 = x (cos1 1). 2 1 = − 1 1 sin (1) d 0, t f t t = =