[y'=f(x,y)a≤x≤b中国矿亚大CHINA UNIVERSITY OFMININGAND TECHNOLOGYLy(a)= yo三方法1.Euler方法显式公式将初值问题的解函数y=y(x)在x点Tarloy展开,有:(x) = (x,)+ (x,)(x-x,)+ ((x-x,)2!而y'=f(x,J),所以 y(x)=f(x,(x,),代入上式:y"(3)以(x)= y(x,)+ f(xn,以(x,)(x-x,)+ r?2!令x=X+I:y"(5.)y(xn+1)= y(x,)+ f(xn,y(x,)(xn+ -x,)+2!"(5)n, 其中,e(x,Xn1)= y(x,)+ f(x,J(x, )h+ 2!"(5)r,得(x)的近似值ym)满足:截去T=2!Euler公式ynr = y, +hf(x,,y))
CHINA UNIVERSITY OF MINING AND TECHNOLOGY 二 方法 1. Euler方法 ( ) Tarloy n 将初值问题的解函数 在 点 展开,有: y y = x x 2 ( ) ( ) ( ) ( )( ) ( ) 2! n nn n y y x yx y x x x x x ′′ ξ = + −+ − ′ 而 , y f xy ′ = (,) ( ) ( , ( )) n nn 所以 ,代入上式: y x f x yx ′ = 2 ( ) ( ) ( ) ( , ( ))( ) ( ) 2! n nn n n y y x yx f x yx x x x x ′′ ξ = + −+ − 1 : n x x 令 = + 2 1 11 ( ) ( ) ( ) ( , ( ))( ) ( ) 2! n n n nn n n nn y y x yx f x yx x x x x ξ + ++ ′′ = + −+ − 2 1 ( ) ( ) ( , ( )) , 2! (, ) n nn n n nn y yx f x yx h h x x ξ ξ + ′′ = + + 其中 ∈ 2 1 ( ) , 2! n y T h ′′ ξ 截去 = 1 1 ( ) n n y x y 得 的近似值 满足: + + 1 (,) n n nn y y hf x y + = + 0 (,) ( ) y f xy a x b ya y ⎧ ′ = ≤ ≤ ⎨ = ⎩ − − Euler公式 显式公式
中国矿亚大医CHINAUNIVERSITY OFMININGANDTECHNOLOGY2x0≤x≤1y=yy例1用Euler公式求解初值问题(h= 0.1)y(0)=1解由题意知:2x,x=a=0,n=10,b=1,yo=1f(x,y)= yy根据Euler公式:2xm(n=1,2,,10)yn+i = y, + hf(x,,y,)= y, + h(y,yn带入数据:2x0)2×0= 1.1y, = yo + h(yo:1+0.1(1Jo2x12×0.1J, = y, + h(y)=1.19181.1 + 0.1(1.1Ji1.1依次类推注方程的精确解:y=/1+2x
CHINA UNIVERSITY OF MINING AND TECHNOLOGY 解 2 (,) , x f xy y y = − 0 0 xa n b y = == = = 0, 10, 1, 1 由题意知: 根据 公式: Euler 1 (,) n n nn y y hf x y + = + 2 ( ) n n n n x y hy y =+ − ( 1,2, ,10) n = " 0 10 0 0 2 ( ) x y y hy y =+ − 2 0 1 0.1(1 ) 1 × =+ − = 1.1 1 21 1 1 2 ( ) x y y hy y =+ − 2 0.1 1.1 0.1(1.1 ) 1.1 × =+ − = 1.1918 带入数据: 依次类推 . 注 方程的精确解: y = +1 2 x 例1 用 公式求解初值问题 Euler 2 0 1 x yy x y ′ = − ≤≤ y(0) 1 = ⎧ ⎨ ⎩ ( ) h = 0.1
中国矿亚大医CHINA UNIVERSITY OF MININGAND TECHNOLOGY2x0≤x≤1V=Vy例1(续)(h= 0.1)y(0)=11.8X.数值解Jn精确解y(rn)11.700.01.00001.0000Euler公式1I0.11.10001.09541.620.21.19181.18321.530.31.27741.264940.41.35821.34161.450.51.43511.41421.360.61.50901.483270.71.54921.580312精确解:y=V1+2x80.81.61251.64981.190.91.67331.717812101.01.78481.73210.100.20.30.40.50.60.70.80.92
CHINA UNIVERSITY OF MINING AND TECHNOLOGY 例1 续( ) 2 0 1 x yy x y ′ =− ≤≤ y(0) 1 = ⎧ ⎨ ⎩ ( ) h = 0.1
中国矿大医CHINA UNIVERSITY OFMININGANDTECHNOLOGYEuler方法的几何意义y个Vlx.+y(x.)Yn+1(x)yoyny(r)1241y1---V0xoX2x.Xn+1Xix
CHINA UNIVERSITY OF MINING AND TECHNOLOGY • n 1 y + . Euler方法的几何意义 n y 2 y 1 y y x( n +1 ) y ( x n ) y ( x2 ) y ( x1 ) . 0 y n 1 x n + x 2 x 1 x 0 x
中国矿亚天整CHINAUNIVERSITYOF MININGANDTECHNOLOGY2.后退的Euler方法隐式公式将y=y(x)在x+点Tarloy展开:V"()y(x) = y(xn+1)+ y'(x++t)(x - xn+1) -2!y"(5)= y(xn+1)+ f(x+1y(x+1)(x -X+1)x-x+2!令x=X,:1Sy(x.) = y(xn+1)+ f(xn+1,(x+)(x, - x+)+2!y"(S')公其中5 e(x,,Xn+1)= y(xn+1)- hf(xn+1, y(xn+1)+2!y"(5')11即:y(xn+1)= y(xn) + hf(xn+1,y(xn+1)2!截去T,=-()r,得(x,)的近似值y,满足:2!一一后退Euler公式Ynt = y, +hf(xu+i, yn1)
CHINA UNIVERSITY OF MINING AND TECHNOLOGY 2. Euler 后退的 方法 ( ) 1 Tarl yo n y yx x 将 在 点 展开: = + 2 1 11 1 ( ) () ( ) ( ) ) 2 ( ) ( ! n n n n y yx yx x y x x x x ξ + + + + ′′ = + −+ − ′ 1 1 1 2 1 1 ( , ( ) () ( ) ( ) 2 ( )) ! n nn n n y yx x f x yx x xx ξ + ++ + + ′′ = + −+ − : n 令 x = x 2 1 11 1 1 ( ) ( ) ( ) ( , ( ))( ) ( ) 2! n nn n nn n n n y y yx f x yx x x x x x ξ + ++ + + ′′ = + −+ − ′ 2 1 11 1 ( ) ( ) ( , ( )) , (, ) 2! n n nn n nn y y x h h f x yx x x ξ ξ + ++ + ′′ − + ′ ∈ ′ = 其中 2 2 ( ) , 2! n y T h ′′ ′ ξ 截去 = − ( ) n n 得 的近似值 满足: y x y 1 11 (,) n n nn y y hf x y + = + + + − − 后退 公式 Euler 即: 2 1 11 ( ) ( ) ( ) ( , ( )) 2! n n nn n h y y x y x hf x y x ξ + ++ ′′ = ′ + − 隐式公式