z组合图形的形心(复合)D由 n个规则形状组成的图形yA=A1--i=1=WZZTS, =[ ydA =y,dA =(3.1c)YeiAi=1i=lS, =[ zdA=[=,dA=(3.1d)FeiA-RETURNPTZZ2ciAYeiASSi=1l(3.2c)Z二一yc=C24nAAnextZAi=1i=1
由 n 个规则形状组成的图形 z C y y z = = n i A Ai 1 1 1 (3.1 ) n n z i ci i i i S ydA y dA y A c = = = = = 组合(复合)图形的形心 1 1 (3.2 ) n ci i y i c n i i z A S z c A A = = = = 1 1 n ci i z i c n i i y A S y A A = = = = 1 1 (3.1 ) n n y i ci i i i S zdA z dA z A d = = = = = next RETURN P7
例3.1试确定下图的形心。解:组合图形,用正、负面积法解之解法1、用正面积法求解,图形分割1及坐标如图4-4aZ(,z)=(0,0)C(0,0)Sol8010120-1010-35, 60J,7C,(-35,60)2222Zy,AJA+J,AVCOAA, + A2y800-35×(10x×110)-20.380×10+10×110图3.2a0+60x(10×110)34.7180×10+10×110next
1 2 1 2 1 2 i i y A y A y A y A A A + = = + 0 35 10 110 20.3 80 10 10 110 − = = − + ( ) 60 10 110 34.7 80 10 10 110 z = = + 0+ ( ) 例3.1 试确定下图的形心。 解 : 组合图形,用正、负面积法解之 解法1、用正面积法求解,图形分割 及坐标如图4-4a 80 110 10 10 y z C2 图3.2a C1 C1 (0,0) C2 (-35,60) next ( ) ( ) 1 y = 0 0 , 1 z , ( 2 2 ) ( ) 80 10 10 -35 2 2 2 2 y = − + + = 120-10 ,z , ,60
解法2、用负面积法求解,图形分割及坐标如图4-4bZ70(0,0)C1负面积(40-35,60-55)福yAJA-J,A0-5×(70×110)1110-20.3mm17AAf - A280×120-70×11060ZEAZA -Z,A0-5×(70×110):-20.3mmA80×120-70×110A-A40图3.2b注:正、负面积法v坐标相差55mm,而55-20.3=34.7RETURN1
解法2、用负面积法求解,图形分割及坐标如图4-4b 图3.2b C1(0,0) C2(40-35,60-55) C2 负面积 C1 y z 40 60 110 70 RETURN 1 2 1 2 1 2 0 5 (70 110) 20.3 80 120 70 110 i i y A y A y A y mm A A A − − = = = = − − − 1 2 1 2 1 2 5 0 110 20.3 80 120 70 110 i i z A z A z A z mm A A A − = = = = − − − 0- (7 ) 注:正、负面积法y坐标相差55mm,而55-20.3=34.7
S 3.2 二次矩3.2.1惯性矩(Moment of inertia)3.2.2惯性半径极惯性矩3.2.3惯性积3.2.4举例3.2.5
§3.2 二次矩 3.2.1 惯性矩(Moment of inertia) 3.2.2 惯性半径 3.2.3 极惯性矩 3.2.4 惯性积 3.2.5 举例