83用坐标表示向量.21 :这样就有PQ=RS,于是PQ/RS13.已知空间四边形ABCD,将AB,AD,CD及CB以相同比分之,证明这四个分点构成一个平行四边形证明:如图.设分点为E,F,G,H.设11-AB,AF=kFDAE-kEB-AD1 +k1 +k则EF = AF- AE=BD.1+kIBD.因此类似地,由CH=kCB以及CG=kCD可以得到HG=EF=HG.证明了EFGH是平行四边形.14.证明:四面体的四条中线交于一点(即四面体的重心),且此交点将每一条中线分成定比为3:1(由顶点算起)的两部分:(注:四面体的中线即四面体的顶点到其对面的重心的连线)证明:建立仿射坐标系[V;VA,VB,VC].G点为△ABC的重心,G为△VBC的重心,由习题1-2的第3题知:VG=(VA+VB+VO) =(33)I(AB+ AC +AV)= I(VB-VA+VC-VA-VA)AG = :(-3VA +VB+VC) = (-1, 3)2取把中线VG分成3:1的分点M,即111VM-VG=()*N同时,VA+AG =) =VM424所以M在VG与AGi上.同理,可证得:若设G2,G3分别是△VAB和AVAC的重心则CG与 BGs也必交于点M,且VM=(),因此444M=M.且交点分每一中线成定比3:1
§ 3 ^IL«þ · 21 · ùÒk −−→PQ = −→RS, u´ −−→PQ//−→RS. 13. ®mo>/ ABCD, ò AB,AD,CD 9 CB ±Ó'©, y ²ùo©:¤²1o>/. y²: Xã. ©: E,F,G,H. −→AE = k −−→EB = 1 1 + k −−→AB, −→AF = k −−→FD = 1 1 + k −−→AD, K −−→EF = −→AF − −→AE = 1 1 + k −−→BD. aq/, d −−→CH = k −−→CB ±9 −−→CG = k −−→CD ± −−→HG = 1 2 −−→BD. Ïd −−→EF = −−→HG, y² EFGH ´²1o>/. 14. y²: o¡No^¥u: (=o¡N%), d:òz ^¥©¤½' 3 : 1 (dº:å) üÜ©. (5: o¡N¥=o¡ Nº:Ùé¡%ë) y²: ïáIX [V ; −→V A, −−→V B, −−→V C]. G : △ABC %, G1 △V BC %, dSK 1–2 1 3 K: −−→V G = 1 3 ( −→V A + −−→V B + −−→V C) = 1 3 , 1 3 , 1 3 , −−→AG1 = 1 3 ( −−→AB + −→AC + −→AV ) = 1 3 ( −−→V B − −→V A + −−→V C − −→V A − −→V A) = 1 3 (−3 −→V A + −−→V B + −−→V C) = −1, 1 3 , 1 3 . r¥ V G ©¤ 3 : 1 ©: M, = −−→V M = 3 4 −−→V G = 1 4 , 1 4 , 1 4 , Ó, −→V A + 3 4 −−→AG1 = 1 4 , 1 4 , 1 4 = −−→V M. ¤± M 3 V G AG1 þ. Ón, y: e G2,G3 ©O´ △V AB Ú △V AC %. K CG2 BG3 7u: M′ , −−−→V M′ = 1 4 , 1 4 , 1 4 , Ïd M′ = M, :©z¥¤½' 3 : 1.
.22第一章向量代数G6第14题图第15题图15.四面体的不相交的两条棱称为对棱,每一对对棱的中点的连线称为四面体的拟中线,证明:四面体的三条拟中线交于它的重心,且此重心是每一条拟中线的中点.证明:同上题建立仿射坐标系[V;VA,VB,VC],设M是四面体的重心,111则VM=设D,E分别为AB,VC的中点.则AD-IAB-IVB-IVA,2=A+B=(20)(1)22=- (o.0,)20所以(1 1ED-VD-VE=((-由于工VE+IED==VM4441说明重心M在ED上且等分ED.同理可证其它线性相关性与线性方程组841.计算下列2阶与3阶行列式:1-sing-1cos0解: (1)(2)= 1.-5.23COssing
· 22 · 1Ù þê b b A C B V G G1 1 14 Kã b b A C B D E V 1 15 Kã 15. o¡NØü^c¡éc, zééc¥:ë¡o ¡N[¥. y²: o¡Nn^[¥u§%, d%´z^[ ¥¥:. y²: ÓþKïáIX [V ; −→V A, −−→V B, −−→V C], M ´o¡N%, K −−→V M = 1 4 , 1 4 , 1 4 . D,E ©O AB,V C ¥:. K −−→AD = 1 2 −−→AB = 1 2 −−→V B − 1 2 −→V A, −−→V D = 1 2 −→V A + 1 2 −−→V B = 1 2 , 1 2 , 0 . −−→V E = 1 2 −−→V C = 0, 0, 1 2 , ¤± −−→ED = −−→V D − −−→V E = 1 2 , 1 2 , − 1 2 . du −−→V E + 1 2 −−→ED = 1 4 , 1 4 , 1 4 = −−→V M, `²% M 3 ED þ © ED. ÓnyÙ§. § 4 5'55§| 1. Oe 2 3 1ª: ): (1) −1 1 2 3 = −5. (2) cos θ − sin θ sin θ cos θ = 1.
.23 :84线性相关性与线性方程组12210(3)0-1= 1.(4)234= 2.00-149162 11Tyz511(6)= 23 +y3 + 23 - 3ryz.(5)= -22.zTy23-3yzr2.利用2阶或3阶行列式解线性方程组:2-y+3z=92T3y=5(2) 3 - 5y + z = -3,(1)2y=1;33+3y-2z=-6.255-3213113-13解:(1)=1,y=-1.13132-32 -332329-1329313-31-3-5-63-261 -6 -24242(2) =7.y4949233-12 -1313-5-511-2 133-229-1 3-5-3136-6189277,之=497232-13 -5113-23.设i,e,es为基(1)证明:向量=32-,=2-3-10=-ei+2e+6e3线性无关:(2)求向量=3-2在基下的坐标;(3)求向量了,使-+2-3+3子=0.解:(1)设有实数1,2,3满足线性关系式+2b+3=0,表达
§ 4 5'55§| · 23 · (3) 1 2 2 0 −1 0 0 0 −1 = 1. (4) 1 1 1 2 3 4 4 9 16 = 2. (5) 2 1 1 1 1 5 2 3 −3 = −22. (6) x y z z x y y z x = x 3 + y 3 + z 3 − 3xyz. 2. |^ 2 ½ 3 1ª)5§|: (1) 2x − 3y = 5, 3x + 2y = 1; (2) 2x − y + 3z = 9, 3x − 5y + z = −3, x + 3y − 2z = −6. ): (1) x = 5 −3 1 2 2 −3 3 2 = 13 13 = 1, y = 2 5 3 1 2 −3 3 2 = −13 13 = −1. (2) x = 9 −1 3 −3 −5 1 −6 3 −2 2 −1 3 3 −5 1 1 3 −2 = −42 49 = − 6 7 , y = 2 9 3 3 −3 1 1 −6 −2 2 −1 3 3 −5 1 1 3 −2 = 42 49 = 6 7 , z = 2 −1 9 3 −5 −3 1 3 −6 2 −1 3 3 −5 1 1 3 −2 = 189 49 = 27 7 . 3. −→e1 , −→e2 , −→e3 Ä. (1) y²: þ −→a = −→e1 + 3−→e2 − −→e3 , −→b = 2−→e1 − 3 −→e2 − 10−→e3 , −→c = − −→e1 + 2−→e2 + 6−→e3 5Ã'; (2) ¦þ −→d = 3−→a − 2 −→b + −→c 3Ä −→e1 , −→e2 , −→e3 eI; (3) ¦þ −→f , ¦ − −→a + 2 −→b − 3 −→c + 3 −→f = 0. ): (1) k¢ê x1,x2,x3 ÷v5'Xªx1 −→a + x2 −→b + x3 −→c = 0, L
.24.第一章向量代数成坐标形式就是1+22—3=031-32+23=0-a1-10x2+6a3=0,它的系数行列式是12-13-32=-5±0-1 -106因此这个方程组只有零解,即己,6,线性无关(2) =3-2 +=3(+3)-2(2310)+(-+2ez+6e3)=-2+17e+23e3,故的坐标是(-2,17,23)37(3)=(2+)=(+15+37)=++3e3.34.判断下列每组的三个向量a,b,是否共面?能否将表示成其它两个向量的线性组合?若能,写出具体的表示式子(1) (5,2,1), b (-1, 4, 2), (-1, -1,5);(2)(3,3,2),6 (6,6,4),(1,-1,0);(3) (1,2, -3), b (-2, -4,6), (1,0,5)解:问题归结为求解ia+226+3=0.(1)齐次线性方程组5-2-=021+4T2—3=01+22+53=0其系数行列式5 -1-124-1=121≠0,512方程只有零解,故原向量组不共面(2)齐次线性方程组3r1+62+23=031+622- 3= 021+4r2=0
· 24 · 1Ù þê ¤I/ªÒ´ x1 + 2x2 − x3 = 0 3x1 − 3x2 + 2x3 = 0 −x1 − 10x2 + 6x3 = 0, §Xê1ª´ 1 2 −1 3 −3 2 −1 −10 6 = −5 6= 0, Ïdù§|k"), = −→a , −→b , −→c 5Ã'. (2) −→d = 3−→a − 2 −→b + −→c = 3(−→e1 + 3−→e2 − −→e3 ) − 2(2−→e1 − 3 −→e2 − 10−→e3 ) + (− −→e1 + 2−→e2 + 6−→e3 ) = −2 −→e1 + 17−→e2 + 23−→e3 , −→d I´ (−2, 17, 23). (3) −→f = 1 3 ( −→a −2 −→b +3−→c ) = 1 3 (−6 −→e1+15−→e2+37−→e3 ) = −2 −→e1+5−→e2+ 37 3 −→e3 . 4. äez|nþ −→a , −→b , −→c ´Ä¡? UÄò −→c L«¤Ù§ üþ5|Ü? eU, ÑäNL«ªf. (1) −→a (5, 2, 1), −→b (−1, 4, 2), −→c (−1, −1, 5); (2) −→a (3, 3, 2), −→b (6, 6, 4), −→c (1, −1, 0); (3) −→a (1, 2, −3), −→b (−2, −4, 6), −→c (1, 0, 5). ): ¯K8(¦) x1 −→a + x2 −→b + x3 −→c = 0. (1) àg5§| 5x1 − x2 − x3 = 0 2x1 + 4x2 − x3 = 0 x1 + 2x2 + 5x3 = 0, ÙXê1ª 5 −1 −1 2 4 −1 1 2 5 = 121 6= 0, §k"), þ|Ø¡. (2) àg5§| 3x1 + 6x2 + x3 = 0 3x1 + 6x2 − x3 = 0 2x1 + 4x2 = 0,
.25.84线性相关性与线性方程组其系数行列式3636-1= 0.240方程组有非零解,故原向量组共面.为将表示成己,6的线性组合,可取3=-1代人,得到方程组31 +62=131+62=121 +4r2=0,这是矛盾方程组,因此飞不能表示成可6的线性组合(3)齐次线性方程组1-22+23=021 - 4r2 = 0-31+62+53= 0,其系数行列式1-2 12-40=0-365方程组有非零解,故原向量组共面。为将表示成,6的线性组合,可取23=-1代人,得到方程组T1 - 22 = -121-42=0-3r1 + 62 = -5,这是矛盾方程组,因此不能表示成,6的线性组合,5.设向量,6,的坐标分别是(1,-1,2),(2,k,1),(1,1-k,k).间:当k取什么值时,,b,共面?特别地,k取什么值时,a,共线?解:这3个向量共面的充分必要条件是其坐标的行列式等于0,即1-122k1=k2-3k+2=0.11-kk
§ 4 5'55§| · 25 · ÙXê1ª 3 6 1 3 6 −1 2 4 0 = 0, §|k"), þ|¡. ò −→c L«¤ −→a , −→b 5|Ü, x3 = −1 \, §| 3x1 + 6x2 = 1 3x1 + 6x2 = 1 2x1 + 4x2 = 0, ù´gñ§|, Ïd −→c ØUL«¤ −→a , −→b 5|Ü. (3) àg5§| x1 − 2x2 + x3 = 0 2x1 − 4x2 = 0 −3x1 + 6x2 + 5x3 = 0, ÙXê1ª 1 −2 1 2 −4 0 −3 6 5 = 0, §|k"), þ|¡. ò −→c L«¤ −→a , −→b 5|Ü, x3 = −1 \, §| x1 − 2x2 = −1 2x1 − 4x2 = 0 −3x1 + 6x2 = −5, ù´gñ§|, Ïd −→c ØUL«¤ −→a , −→b 5|Ü. 5. þ −→a , −→b , −→c I©O´ (1, −1, 2), (2,k, 1), (1, 1 − k,k). ¯: k o, −→a , −→b , −→c ¡? AO/, k o, −→a , −→c ? ): ù 3 þ¡¿©7^´ÙI1ªu 0, = 1 −1 2 2 k 1 1 1 − k k = k 2 − 3k + 2 = 0.