34.1相似三角形的判定 第3课时相似三角形的判定定理2
3.4.1 相似三角形的判定 第3课时 相似三角形的判定定理2
两边成比例且夹角相等的两个三角形相似
两边_________ 成比例 且_______ 夹角 相等的两个三角形相似.
知识点两边成比例且夹角相等的两个三角形相似 1·(4分)能判定△ABC和△A′B′C′相似的条件是(C) AB AC A A′B′A′C AB A B B ACA′C ,且∠A=∠C AB BC ,且∠B=∠B 4′B′B′C AB AC D.A′B ,且∠B=∠B
知识点 两边成比例且夹角相等的两个三角形相似 1.(4 分)能判定△ABC 和△A′B′C′相似的条件是( ) A. AB A′B′ = AC A′C′ B. AB AC= A′B′ A′C′ ,且∠A=∠C′ C. AB A′B′ = BC B′C′ ,且∠B=∠B′ D. AB A′B′ = AC A′C′ ,且∠B=∠B′ C
2·(3分)如图,四边形ABCD的对角线4C,BD相交于点O, 且将这个四边形分成①,②,③,④四个三角形.若 OA4:OC=OB:OD,则下列结论中一定正确的是(B) A·①和②相似B.①和③相似 C·①和④相似D.②和④相似
2.(3分)如图,四边形ABCD的对角线AC,BD相交于点O, 且将这个四边形分成①,②,③,④四个三角形.若 OA∶OC=OB∶OD,则下列结论中一定正确的是( ) A.①和②相似 B.①和③相似 C.①和④相似 D.②和④相似 B
3·(4分)如图,∠1=∠2,那么添加一个条件后,仍无法 判定△ABC∽△ADE的是(B) A AD AE B AB BC AB AC A D DE C·∠B=∠DD.∠C=∠AED
3.(4 分)如图,∠1=∠2,那么添加一个条件后,仍无法 判定△ABC∽△ADE 的是( ) A. AB AD= AC AE B. AB AD= BC DE C.∠B=∠D D.∠C=∠AED B