多重积分 习题课
多重积分 习题课
注意: 1、奇偶性 2、轮换性 ∫f(x,y)dxtd=』∫(0y,x)dtd ∫-si2(x+yb=』co(x+y)dp
注意: 1、奇偶性 = D D f (x, y)dxdy f ( y, x)dxdy 2、轮换性 x y dxdy D 1− sin ( + ) 2 = + D cos(x y)dxdy
P147917(1)、(3) 0≤x≤1 解 l-x≤y≤√1-x2 x+y=1→r= cos0+sin e 0≤6 D c0s6+ Singr≤1 Ⅰ=|2d f∫(rcosθ,rsin)rdn cos e+sine
P147 9.17(1)、(3) − − 2 1 1 0 1 x y x x 解: + 1 cos sin 1 2 0 r D : cos sin 1 1 + x + y = r = + = 1 cos sin 1 2 0 I d f (r cos ,rsin )rdr
x2+(y-1)2=1→r=2sin6 (x-1)2+y2=1→r=2cos0 π/4P2sin rcos.rsinorar r/2 er2 cos e 兀/4J0 f(rose, rsinerdr
(1,1) ( 1) 1 2sin 2 2 x + y − = r = ( 1) 1 2cos 2 2 x − + y = r = = 2sin 0 / 4 0 I d f (r cos ,rsin )rdr + 2cos 0 / 2 / 4 d f (r cos ,rsin )rdr
例1P164972 af可fax, of ay af of cos+sin e ar Ox ar ay ar 0. 今”r ax a 2 af ∴左式 2兀 2兀 limdel-o 2兀g-00 2086→0JodB/g In e dr A im[2m lf(cose, sinO)-f(ecos, e sin 0)de E→>0 2丌 2r 6-0 Jo -f(ecos,Esin 0)de =lim f(acos,, esin 6)=f(0, 0) →0
例1 P164 9.72r y y f r x x f r f + = cos sin y f x f + = r r f y y f x x f + = dr r r f r d → − = 2 0 1 2 2 0 lim 2 1 左式 lim [ f (cos ,sin ) f ( cos , sin )]d 2 1 2 0 0 − − = → lim f ( cos , sin )d 2 1 2 0 0 − − = → lim ( cos , sin ) (0,0) 0 0 0 = f = f → dr r f d → − = 2 1 0 0 lim 2 1