•几十年来图论在理论上和应用上都得到很大的发展,特别是在近30多年来由于计算机的广泛应用而又得到飞跃的发展。•在计算机科学、运筹学、化学、物理和社会科学等方面都取得了不少成果,对计算机学科中的操作系统研究、编译技术、人工智能和计算机网络等方面都有广泛的应用。•这里主要讨论图的基本概念和算法,为今后的学习和研究打下基础。本章首先给出图、简单图、完全图、子图、路和图的同构等概念,接着研究了连通图性质和规律,给出了邻接矩阵、可达性矩阵、连通矩阵和完全关联矩阵的定义。最后介绍了欧拉图与哈密尔顿图
文件格式: PPT大小: 2.13MB页数: 123
对于从事计算机科学工作的人们来说,集合论是必不可少的基础知识。例如程序设计语言、数据结构、形式语言等都离不开子集、幂集、集合的分类等概念。集合成员表和范式在逻辑设计、定理证明中也都有重要应用。本部分从集合的直观概念出发,介绍了集合论中的一些基本概念和基本理论。集合论是研究集合的一般性质的数学分支,它研究集合不依赖于组成它的事物的特性的性质。集合论总结出由各种对象构成的集合的共同性质,并用统一的方法来处理。集合论的特点是研究对象的广泛性,集合是各种不同对象的抽象,这些对象可以是数或图形,也可以使任意其它事务
文件格式: PPT大小: 1.51MB页数: 213
重庆大学数学与统计学院:《数值分析 Numerical Analysis》课程教学讲义_17_数模论文——信息采集设备的布置问题
文件格式: PDF大小: 461.08KB页数: 30
重庆大学数学与统计学院:《数值分析 Numerical Analysis》课程教学讲义_16_车速估计模型
文件格式: PDF大小: 407.22KB页数: 20
重庆大学数学与统计学院:《数值分析 Numerical Analysis》课程教学讲义_15_《数值分析》试题2
文件格式: PDF大小: 66.02KB页数: 2
重庆大学数学与统计学院:《数值分析 Numerical Analysis》课程教学讲义_14_《数值分析》试题1
文件格式: PDF大小: 51.33KB页数: 1
§1 引言 §2 Euler 方法 §3 Runge-Kutta方法 §4 线性多步法
文件格式: PDF大小: 154.25KB页数: 9
§1 求积公式 §2 Newton-Cotes公式 §3 复化求积公式 §4 Romberg求积公式 §5 Gauss型求积公式 §6 数值微分
文件格式: PDF大小: 194.36KB页数: 17
§1 逼近的概念 §2 最佳平方逼近 §3 正交多项式及性质 §4 数据拟合与最小二乘法 §5 超定线性方程组的最小二乘解
文件格式: PDF大小: 209.24KB页数: 20
§1 Lagrange插值 §2 Newton 插值法 §4 Hermite插值 §6 分段插值 §7 样条插值
文件格式: PDF大小: 188.2KB页数: 17










