河南科技学院:《高等数学》课程教学资源(PPT课件讲稿)两向量的数量积、两向量的向量积、向量的混合积
文件格式: PPT大小: 542.5KB页数: 28
第一节 空间直角坐标系 一、空间点的直角坐标 二、空间两点间的距离 第二节 向量及其加减法向量与数的乘法 一、向量的概念 二、向量的加减法 三、向量与数的乘法 第三节 向量的坐标 一、向量在轴上的投影与投影定理 二、向量在坐标轴上的分向量与向量的坐标 三、向量的模与方向余弦的坐标表示式 第四节 数量积 向量积、混合积 一、两向量的数量积 二、两向量的向量积 三、向量的混合积 第五节 曲面及其方程 一、曲面方程的概念 二、旋转曲面 三、柱面 第六节 空间曲线及其方程 一、空间曲线的一般方程 二、空间曲线的参数方程 三、空间曲线在坐标面上的投影 第七节 平面及其方程 一、平面的点法式方程 二、平面的一般方程 三、两平面的夹角 第八节 空间直线及其方程 一、空间直线的一般方程 二、空间直线的对称式方程与参数方程 三、两直线的夹角 四、直线与平面的夹角 第九节 二次曲面 一、基本内容 (一)椭球面 (二)抛物面 (三)双曲面 二、小结
文件格式: PPT大小: 4.69MB页数: 215
第一节 定积分的元素法 第二节 平面图形的面积 一、直角坐标系情形 二、极坐标系情形 第三节 体积 一、旋转体的体积 二、平行截面面积为已知的立体的体积 第四节 平面曲线的弧长 一、平面曲线弧长的概念 二、直角坐标情形 三、参数方程情形 四、极坐标情形 第五节 功 水压力和引力 一、变力沿直线所作的功 二、水压力 三、引力
文件格式: PPT大小: 1.98MB页数: 90
第一节 定积分的概念 一、问题的提出 二、定积分的定义 三、存在定理 四、几何意义 第二节 定积分的性质、中值定理 第三节 微积分基本公式 一、问题的提出 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式发 第四节 定积分的换元积分法 第五节 定积分的分部积分公式 第七节 广义积分 一、无穷限的广义积分 二、无界函数的广义积分
文件格式: PPT大小: 4.2MB页数: 163
第一节 中值定理 一、罗尔中值定理 二、拉格朗日中值定理 三、柯西中值定理 第二节 洛必达法则 第三节 泰勒(Taylor)定理 一、问题的提出 二、Pn和Rn的确定 三、泰勒中值定理 四、简单应用 第四节 函数单调性的判定法 一、单调性的判别法 二、单调区间求法 第五节 函数极值及其求法 一、函数极值的定义 二、函数极值的求法 第六节 最大值、最小值问题 一、最值的求法 二、应用举例 第七节 曲线的凹凸与拐点 一、曲线凹凸的定义 二、曲线凹凸的判定 三、曲线的拐点及其求法 第九节 曲率 一、弧微分 二、曲率及其计算公式 三、曲率圆与曲率半径
文件格式: PPT大小: 4.38MB页数: 160
第一节 导数的概念 第二节 函数的和、差、积、商的求导法则 一、和、差、积、商的求导法则 二、例题分析 三、小结 第三节 反函数与复合函数的求导法则 一、反函数的导数 二、复合函数的求导法则 三、小结 第四节 初等函数的求导问题 双曲函数与反双曲函数的导数 一、初等函数的求导问题 二、双曲函数与反双曲函数的导数 三、小结 第五节 高阶导数 一、高阶导数的定义 二、 高阶导数求法举例 三、小结 第六节 隐函数的导数由参数方程所确定的函数的导数相关变化率 一、隐函数的导数 二、对数求导法 三、由参数方程所确定的函数的导数 四、相关变化率 五、小结 第七节 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、微分形式的不变性 七、小结 第八节 微分在近似计算中的应用 一、计算函数增量的近似值 二、计算函数的近似值 三、误差估计 四、小结
文件格式: PPT大小: 2.84MB页数: 170
第一节 微分方程的基本概念 一、问题的提出 二、微分方程的定义 三、主要问题-----求方程的解 第二节 可分离变量的微分方程 第三节 齐次方程 一、齐次方程 二、可化为齐次的方程 第四节 一阶线性微分方程 一、线性方程 二、伯努利方程 第五节 全微分方程 一、全微分方程及其求法 二、积分因子法 三、一阶微分方程小结 第六节 欧拉-柯西近似法 一、方向场 积分曲线 二、欧拉-柯西近似法 第七节 可降阶的高阶微分方程 一、 型 二、 型 三、恰当导数方程 四、齐次方程 第八节 高阶线性微分方程 一、概念的引入 二、线性微分方程的解的结构 三、降阶法与常数变易法 第九节 二阶常系数齐次线性微分方程 一、定义 二、二阶常系数齐次线性方程解法 三、n阶常系数齐次线性方程解法 第十节 二阶常系数非齐次线性微分方程 第十一节 欧拉方程 第十二节 微分方程的幂级数解法 一、问题的提出 二、 特解求法 三、二阶齐次线性方程幂级数求法 第十三节 常系数线性微分方程组解法举例 一、微分方程组 二、常系数线性微分方程组的解法 三、小结
文件格式: PPT大小: 4.37MB页数: 230
第一节 常数项级数的概念 一、问题的提出 二、级数的概念 三、基本性质 四、收敛的必要条件 第二节 常数项级数的审敛法 一、正项级数及其审敛法 二、交错级数及其审敛法 三、绝对收敛与条件收敛 第三节 幂级数 一、函数项级数的一般概念 二、幂级数及其收敛性 三、幂级数的运算 第四节 函数展开成幂级数 一、泰勒级数 二、函数展开成幂级数 第五节 函数的幂级数展开式的应用 一、近似计算 二、计算定积分 三、求数项级数的和 四、欧拉公式 第六节 函数项级数的一致收敛性、一致收敛级数的基本性质 第七节 傅里叶级数 一、问题的提出 二、三角级数 三角函数的正交性 三、函数展开成傅里叶级数 第八节 正弦级数与余弦级数 一、奇函数和偶函数的傅里叶级数 二、函数展开成正弦级数或余弦级数 第九节 周期为2L的周期函数傅里叶级数 一、以2L为周期的傅氏级数 二、典型例题 第十节 傅里叶级数的复数形式
文件格式: PPT大小: 4.89MB页数: 300
第一节 对弧长的曲线积分 一、问题的提出 二、对弧长的曲线积分的概念 三、对弧长曲线积分的计算 四、几何与物理意义 第二节 对坐标的曲线积分 一、问题的提出 二、对坐标的曲线积分的概念 三、对坐标的曲线积分的计算 第三节 格林公式及其应用 一、区域连通性的分类 二、格林公式 三、简单应用 第四节 对面积的曲面积分 一、概念的引入 二、对面积的曲面积分的定义 三、计算法 第五节 对坐标的曲面积分 一、基本概念 二、概念的引入 三、概念及性质 四、计算法 五、两类曲面积分之间的联系 第六节 高斯公式 通量与散度 一、高斯公式 二、简单的应用 三、物理意义——通量与散度 第七节 斯托克斯公式环流量与旋度 一、斯托克斯(stokes)公式 二、简单的应用 三、物理意义---环流量与旋度
文件格式: PPT大小: 3.93MB页数: 208
第一节 函数 一、基本概念 二、函数概念 三、函数的特性 四、反函数 五、小结 思考题 第二节 初等函数 一、基本初等函数 二、复合函数 初等函数 三、双曲函数与反双曲函数 四、小结 思考题 第三节 数列的极限 一、概念的引入 二、数列的定义 三、数列的极限 四、数列极限的性质 五、小结 思考题 第四节 函数的极限 一、自变量趋向无穷大时函数的极限 二、自变量趋向有限值时函数的极限 三、函数极限的性质 四、小结 思考题 第五节 无穷小与无穷大 一、无穷小 二、无穷大 三、无穷小与无穷大的关系 四、小结 思考题 第六节 极限运算法则 一、极限运算法则 二、求极限方法举例 三、小结 思考题 第七节 极限存在准则、两个重要极限 一、极限存在准则 二、两个重要极限 三、小结 第八节 无穷小的比较 一、无穷小的比较 二、等价无穷小代换 第九节 函数的连续性与间断点 一、函数的连续性 二、函数的间断点 三、小结 第十节 连续函数的运算与初等函数的连续性 一、四则运算的连续性 二、反函数与复合函数的连续性 三、初等函数的连续性 四、小结 第十一节 闭区间上连续函数的性质 一、最大值和最小值定理 二、介值定理 三、小结
文件格式: PPT大小: 4.65MB页数: 297
©2025 mall.hezhiquan.com 和泉文库
帮助反馈侵权