例:已知F(ao)如图,求f(t) F() 0 0 0101+O 0 解:(1)利用对称性求解 将F(O)的o换成t得F(t),F()为如图所示的矩形脉冲 F0(t) F(t)=F0(+00)+F(t-00) Joo +e Jooo 0,0 >P[F()](e
例:已知F()如图,求f (t) 解:(1)利用对称性求解 将F()的换成t,得F(t), F0 (t)为如图所示的矩形脉冲 −1 1 t ( ) 0 F t ( ) ( ) ( ) = 0 +0 + 0 −0 F t F t F t [ ( )] ( ) 0 0 0 j j F t e e − F + 0 0 −1 1 +0 F() −0 1
40 Sa(@,@)cos ooa F(t<>40, Sa(,@)cos O,a 由对称性4o1S(1)coso0t42mF(O)=2nF(O) F()< 20 Sa(@,t )cos oot (2)利用调制定理求解 16()F(a)=F(a+)+F(O-O) 0,00 f(=2F [Fo(o)] cos Oot
= 41 Sa(1 )cos0 F(t) 41 Sa(1 )cos0 4 ( )cos 2 ( ) 2 ( ) 由对称性 1 Sa 1 t 0 t F − = F F Sa t t 1 0 1 ( )cos 2 ( ) (2)利用调制定理求解 −1 1 ( ) F0 ( ) ( ) ( ) F = F0 +0 + F0 −0 f t F t 0 0 1 ( ) = 2 [ ()] cos − F
f(t 20y Sa(a,t)cos ot (3)利用频域卷积定理 F()=F0()*[(O+0)+6(O-00 f(1)=2·F[F0(O)F[(+O0)+6(O-00 2兀:Sa(o1t)·[e JOd J@ot 2丌 20 ala,t)cos 0
f t Sa t t 1 0 1 ( )cos 2 ( ) = (3)利用频域卷积定理 ( ) ( ) [ ( ) ( )] F = F0 +0 + −0 ( ) 2 [ ( )] [ ( ) ( )] 0 0 1 0 1 = + + − − − f t F F F [ ] 2 1 2 ( ) 0 0 1 1 j t j t Sa t e e = + − Sa t t 1 0 1 ( )cos 2 =
例:求c(O)( 解:(t)<>z8(o)+ 由对称性c()4>[zo(-t)+ 2丌 E()<>=(t) 27ygji 例:求cos23(t+1)-(t-1 解:cos23=(1+cos6t)
例:求() j t 1 解: ( ) ( ) + ] ( ) 1 [ ( ) 2 1 ( ) j t t − − + 由对称性 jt t 2 1 ( ) 2 1 ( ) − 例:求cos2 3t[(t +1) −(t −1)] (1 cos6 ) 2 1 cos 3 2 解: t = + t