(2) Rieman可积的充要条件 f(x)在[a,b上 Riemann可积 F=(x)kx=加mn∑MAx=m,∑mA=(xk 其中:【M=s甲p/(x)x≤x≤x} m=nf(x)x≤x≤x}
(2) Riemann可积的充要条件 f(x)在[a,b]上Riemann可积 i n i i T b a f x dx = M x = → 1 || || 0 ( ) lim m x f x dx b a i n i i T lim ( ) 1 || || 0 = = = → inf{ ( ): } sup{ ( ): } 1 1 i i i i i i m f x x x x M f x x x x = = − 其中: − xi-1 xi xi-1 xi
(2) Rieman可积的充要条件 其中: M=Sup{(x):x1≤x≤x} m2=nf1f(x):x1≤x≤x f(x)在[a,b]上 Riemann可积 vE>03分划,使得∑Ar≤E
(2) Riemann可积的充要条件 f(x)在[a,b]上Riemann可积 = i n i i T x 1 0, 分划 ,使得 i i i i i i i i i M m m f x x x x M f x x x x = − = = − − inf{ ( ): } sup{ ( ): } 1 1 其中: xi-1 xi