§5.1. FOURIER级数 16/67回 2 2n丌 cos T xdx 应用积分公式: r cos Px dr n cos Px+n sin Px 2 CoS SIn T 0 2n丌 COS 3T(2nT 0 =2 2n丌 2n丌 f(t)sint dt o 3-t sin xdx ● First●Prev●Next●Last● Go Back● Full Screen●cose●Quit
• First • Prev • Next • Last • Go Back • Full Screen • Close • Quit §5.1. FOURIER ?ê 16/67 = 2 T Z T 0 1 3 x cos 2nπ T xdx , A^È©úªµ Z x cos Px dx = 1 P2 cos Px + x P sin Px an = 2 T · 1 3 " 1 2nπ T 2 cos 2nπ T x + x 2nπ T sin 2nπ T x #T 0 = 2 3T T 2nπ 2 cos 2nπ T x + 2nπ T x sin 2nπ T x T 0 = 0 , bn = 2 T Z T 0 f(t) sin 2nπ T t dt = 2 T Z T 0 1 3 x sin 2nπ T x dx
§5.1. FOURIER级数 7/67圆 2 2 not T coS 0 2n丌2 2n丌 SIn r cos 3T\ 2nT T T 3n丌 T 2n丌 f(x)= n 3 T S例3(P92,4(1)将函数f(x)=cos3x展为 Fourier级数 解:可按书上的标准方法展开.此外,还可令t=e后把f(x 化为t的有理分式,展为 Taylor级数后再将变数换回x e cos x ● First●Prev●Next●Last● Go Back● Full Screen●cose●Quit
• First • Prev • Next • Last • Go Back • Full Screen • Close • Quit §5.1. FOURIER ?ê 17/67 = 2 T · 1 3 " 1 2nπ T 2 sin 2nπ T x − x 2nπ T cos 2nπ T x #T 0 = 2 3T T 2nπ 2 sin 2nπ T x − 2nπ t x cos 2nπ T x T 0 = − T 3nπ , f(x) = T 6 − X ∞ n=1 T 3nπ sin 2nπ T x . ✿ ~®(P.92§4(1))ò¼ê f(x) = cos3 x. ÐFourier?ê© )µUÖþIO{Ðm©d §- t = e ix r f(x) z t kn©ª§Ð Taylor ?ê2òCê£ x© f(x) = cos3 x = e ix + e −ix 2 3
§5.1. FOURIER级数 18/67回 e3x+ 3er+3e-ix +e-13x 83-43-4 十e 2 cos x + cos 3x 注:本题其实就是三倍角公式: cos 3x 4 cos-3 cos x 所以 3 f(r)= cos'x=cos x + cos 3x S例4(P:92,4(3)在(-x,x)这个周期上,∫(x)= cos ar,(非整 数).将其展为 Fourier级数 ● First●Prev●Next●Last● Go Back● Full Screen●cose●Quit
• First • Prev • Next • Last • Go Back • Full Screen • Close • Quit §5.1. FOURIER ?ê 18/67 = 1 8 e i3x + 3e ix + 3e −ix + e −i3x = 3 4 · e ix + e −ix 2 + 1 4 · e i3x + e −i3x 2 = 3 4 cos x + 1 4 cos 3x. 5µKÙ¢Ò´núªµ cos 3x = 4 cosx −3 cos x ¤± f(x) = cos3 x = 3 4 cos x + 1 4 cos 3x. ✿ ~¯(P.92§4(3))3 (−π, π) ù±Ïþ§f(x) = cos αx§(α ê)©òÙÐFourier?ê©