设/:E→R记Ea={x∈E:f(x)>a,则 E [≥a] (=∩E > [a+∞)=0(a-1,+)(aa-h,+∞) n- a-1/n [([ -1/1a-1/a-l/n+1a
例 [ ] 1 [ ] 1 n f a n E f a E − = = 设f : E → R,记E[ f a] ={x E : f (x) a},则 ( [ a-1/n a [ , ) ( , ) 1 1 + = − + = n n a a ( ) [ ] 1 1 n f a n E − = = ( [ , )) 1 1 − + = n n a ( [ ( [ [ a-1/n-1 a-1/n a-1/n+1 a
例设f:E→R记E1={x∈E:f(x)>a,则 ∪E (= n=1 a+ LEL >a+ (a,+∞)=[a+1,+∞) (=∪(a+1,+∞) a a+1/n
例 设f : E → R,记E[ f a] ={x E : f (x) a},则 [ ] 1 [ ] 1 n f a n E f a E + = = ( [ a a+1/n ( ( , ) ) 1 1 = + + = n n a ( ) [ ] 1 1 n f a n E + = = ( , ) [ , ) 1 1 + = + + = n n a a