6(1)极限存在准则
October, 2004 1.6 (1) 极限存在准则
极限存在准则 准则I(数列的夹逼准则) Squeeze Theorem 设有三个数列:{xn}{yn}{ 若它们满足条件: (1)yn≤x≤zn(n=1,2,3,…) (2)lim yn =A limin=A n→0 n→00 则limx n->0々个 October 2004
October, 2004 一、极限存在准则 准则 I (数列的夹逼准则) 设有三个数列: { }n x { }n y { }n z 若它们满足条件: (1) n n n y x z ( 1,2,3,...) n = (2) lim n n y A → = lim n n z A → = 则 lim n n x A → = Squeeze Theorem
(1)yn≤xn≤zn(n=1,2,3,…) (2) lim ym=A limin= A n→0 之2= 则lim 示意图 A October 2004
October, 2004 示意图 (1) n n n y x z ( 1,2,3,...) n = (2) lim n n y A → = lim n n z A → = 则 lim n n x A → = n n n A y x z
(1)yn≤x≤zn(n=1,2,3,) (2)lim yn=A liman=A n→0 n→0 则 limx=A n→0 证明VE>0 lim yn=A= 3N A-E<Vn<A+8 (n>M1) lim z=A→彐N2A-<z,<A+ n→>0 (ctober 2004
October, 2004 ( 1 ) n n n y x z ( 1,2,3,...) n = (2 ) lim n n y A → = lim n n z A → = 则 lim n n x A → = 证明 0 lim n n y A → = N1 A y A n − + 1 ( ) n N lim n n z A → = N2 A z A n − + 2 ( ) n N
lim yn=A= A-E<Dn<A+8(n>N n→0 A-8<Zn<A+E(n>N2) n→00 VE>0彐N=max{N1,N2 n>N=max{N1,N2}→ E<yn Sx<zn< A n→00 A-8 A A+8
October, 2004 lim n n y A → = A y A n − + 1 ( ) n N lim n n z A → = A z A n − + 2 ( ) n N 0 = N N N max{ , } 1 2 max{ , } 1 2 n N N N = A yn − n z A + n x lim n n x A → = y x z n n n A− A A+