4.数量积的坐标表示 设a=a,i+a,了+ak,b=bi+b,万+b无,则 a.b=(axi+ay J+az k)-(bx i+by j+bk) ii=j万=.=1,7j=jk=7=0 a.b=axbx +ayby +ab 两向量的夹角公式 当a,b为非零向量时,由于a.b=cos0,得 a.b axbx +a by +a-b cos0 va+aj+a ++b2 HIGH EDUCATION PRESS 机动目录上页下页返回结束
4. 数量积的坐标表示 设 则 = 0 x x y y z z =a b + a b + a b 当 为非零向量时, cos = = x x y y z z a b + a b + a b 2 2 2 ax + ay + az 2 2 2 bx + by + bz 由于 a b cos a a i a j a k , = x + y + z b b i b j b k , = x + y + z (a i + a j + a k ) x y z (b i b j b k ) x + y + z i j = j k = k i a b a b 两向量的夹角公式 , 得 机动 目录 上页 下页 返回 结束
例2.已知三点M(1,1,1),4A(2,2,1),B(2,1,2),求 ∠AMB 解:MA=(1,1,0),MB=(1,0,1) 则 cOS∠AMB= MA.MB MAMB 1+0+0 1 √22 2 故 ∠AMB= 3 HIGH EDUCATION PRESS 机动目录上页下页返回结束
MA = ( ), MB = ( ) = B M 例2. 已知三点 M (1,1,1), A(2,2,1),B(2,1,2), AMB . A 解: 1, 1, 0 1, 0, 1 则 cos AMB = 1+0 +0 2 2 AMB = 求 MA MB MA MB 故 机动 目录 上页 下页 返回 结束