第3章集合 具有有限个元素的集合叫有限集,否则叫无限集。有 限集元素的个数称为该集合的基数,也叫集合的势。有限 集A的基数记为A。 例如:设A日a,b,c,A是有限集,A的基数4=3。 无限集也有基数的概念。无限集的基数比有限集的基 数要复杂的多,本书将在5.3节中介绍。 扩展的自然数集N=0,1,2,3,…}是无限集。整数集合、 有理数集合Q、实数集合R和复数集合C都是常见的无限集
第3章 集合 具有有限个元素的集合叫有限集,否则叫无限集。有 限集元素的个数称为该集合的基数,也叫集合的势。有限 集A的基数记为|A|。 例如:设 A=a,b,c,A 是有限集,A的基数|A|=3。 无限集也有基数的概念。无限集的基数比有限集的基 数要复杂的多,本书将在5.3节中介绍。 扩展的自然数集N=0,1,2,3, …是无限集。整数集合I、 有理数集合Q、实数集合R和复数集合C都是常见的无限集
第3章集合 3.1.2子集和集合的相等 定义3.1.1设A,B是任意的集合,当A的每一元素都 是B的元素时,则称A是B的子集,也称A包含在B内或B包 含A。记为AcB或B2A。 当A不是B的子集时,记为AB。 AcB用谓词公式表示为:AcB→(x)(x∈A→x∈B) AB用谓词公式表示为:A华B→(3x)x∈A∧xEB) 例如:设A=1},B=1,2},C-1,2,3}则 ACA ACB,BCC,AcC C夹B 可以证明,集合的包含有下列性质: ①自反性。即对任意集合A,ACA。 ②传递性。即对任意集合A、B、C,当AcB和BcC 时,AcC
第3章 集合 3.1.2子集和集合的相等 定义3.1.1 设A,B是任意的集合,当A的每一元素都 是B的元素时,则称A是B的子集,也称A包含在B内或B包 含A。记为AB或BA。 当A不是B的子集时,记为A⊈B。 AB用谓词公式表示为:AB(x)(xA→xB) A⊈B用谓词公式表示为: A⊈B(x)(xA∧xB) 例如:设A=1,B=1,2,C=1,2,3 则 AA AB,BC,AC C⊈B 可以证明,集合的包含有下列性质: ①自反性。即对任意集合A,AA。 ②传递性。即对任意集合A、B、C,当AB和BC 时,AC
第3章集合 定义3.1.2设A,B是集合,如果AcB且BcA,则称A 与B相等。记为A=B。如果A与B不相等,记为A≠B。 集合相等也可用谓词公式表示为: A=B台AcB∧BCA →(x)(x∈A→x∈B)∧(付x)(x∈B→x∈A) →(Vx)x∈A←→x∈B) 例如:设A=1,2,B=1,2},C=2,1}则 A=C,A≠B 由集合相等的定义可以看出,集合相等有下列性质: ①自反性:即对任意集合A,A=A。 ②对称性:即对任意集合A、B,当A=B时,B=A。 ③传递性:即对任意集合A、B、C,当A=B和B=C时, A=C
第3章 集合 定义3.1.2 设A,B是集合,如果AB且BA,则称A 与B相等。记为A=B。如果A与B不相等,记为A≠B。 集合相等也可用谓词公式表示为: A=BAB∧BA (x)(xA→xB)∧(x)(xB→xA) (x)(xA↔xB) 例如:设 A=1,2,B=1, 2,C=2,1 则 A=C,A≠B 由集合相等的定义可以看出,集合相等有下列性质: ①自反性: 即对任意集合A,A=A。 ②对称性: 即对任意集合A、B,当A=B时,B=A。 ③传递性: 即对任意集合A、B、C,当A=B和B=C时, A=C
第3章集合 定义3.1.3设A,B是集合,如果AcB且A≠B,则称A是 B的真子集。记为AcB。如果A不是B的真子集,记为A¢B。 真子集用谓词公式表示为: ACB→AcB∧A≠B 台(x)x∈A→x∈B)∧(3x)x∈B∧xEA) 例如:设A=a,B=a,b,C-a,b,c}则 ACB,BCC,ACC AZA 又如,自然数集是整数集合的真子集,也是有理数集 合和实数集合的真子集,即NcI,NcQ,NcR
第3章 集合 定义3.1.3 设A,B是集合,如果AB且A≠B,则称A是 B的真子集。记为AB。如果A不是B的真子集,记为AB。 真子集用谓词公式表示为: ABAB∧A≠B (x)(xA→xB)∧(x)(xB∧xA) 例如:设 A=a,B=a,b,C=a,b,c 则 AB,BC,AC AA 又如,自然数集是整数集合的真子集,也是有理数集 合和实数集合的真子集,即NI,NQ,NR
第3章集合 定义3.1.4不包含任何元素的集合叫空集。记为⑦ 空集可以表示为: O-x|P(x)∧一P(x)}其中,P(x)为任意谓词 空集☑是不包含任何元素的集合,所以,☑=0。 定理3.1.1空集是任意集合的子集。 证明:设A是任意集合。对任意对象x,由空集的定义 知,x∈⑦为假,由条件联结词的定义知,x∈⑦→x∈A为真。 根据全称推广规则有 (x)(x∈☑→x∈A) 为真,故☑cA
第3章 集合 定义3.1.4 不包含任何元素的集合叫空集。记为。 空集可以表示为: =x | P(x)∧P(x) 其中,P(x)为任意谓词 空集是不包含任何元素的集合,所以,||=0。 定理3.1.1 空集是任意集合的子集。 证明:设A是任意集合。对任意对象x,由空集的定义 知,x为假,由条件联结词的定义知,x→xA为真。 根据全称推广规则有 (x)( x→xA) 为真,故A