第3章集合 第3章集合 3.1集合的基本概念 3.2集合的运算 3.3集合恒等式 3.4集合的覆盖与划分 3.5笛卡尔积 返回总目录
第3章 集合 第3章 集合 3.1 集合的基本概念 3.2 集合的运算 3.3 集合恒等式 3.4 集合的覆盖与划分 3.5 笛卡尔积 返回总目录
第3章集合 第3章集合 3.1集合的基本概念 些确定的、能区分的对象的全体是集合,通常用大 写的英文字母表示。组成集合的对象叫做集合的元素或成 员,常用小写的英文字母表示。 集合的元素必须是确定的。所谓确定的,是指任何一 个对象是不是集合的元素是明确的、确定的,不能模棱两 可。 集合的元素又是能区分的,能区分的是指集合中的元 素是互不相同的。如果一个集合中有几个元素相同,算做 个。例如集合1,2,3,3和1,2,3是同一集合
第3章 集合 第3章 集 合 3.1集合的基本概念 一些确定的、能区分的对象的全体是集合,通常用大 写的英文字母表示。组成集合的对象叫做集合的元素或成 员,常用小写的英文字母表示。 集合的元素必须是确定的。所谓确定的,是指任何一 个对象是不是集合的元素是明确的、确定的,不能模棱两 可。 集合的元素又是能区分的,能区分的是指集合中的元 素是互不相同的。如果一个集合中有几个元素相同,算做 一个。例如集合1,2,3,3和1,2,3是同一集合
第3章集合 集合的元素是任意的对象,对象是可以独立存在的具体 的或抽象的客体。它可以是独立存在的数、字母、人或其它 物体,也可以是抽象的概念,当然也可以是集合。例如集合 1,2,3,1,2的元素3和1,2}就是集合。 集合的元素又是无序的,即1,2,3}和3,1,2是同一集合 设S是集合,a是S的一个元素,记为aeS,读做"a属于 S”, 也可读做"a在S中”。如果a不是S的元素,记为aS, 读做“a不属于S”,也可读做“a不在S中” 例如: ①26个英文字母组成一个集合,任一英文字母是该集合 的元素 ②直线上的所有点组成实数集合R,每一个实数是集合R 的元素 ③陕西科技大学全体学生组成一个集合,该校的每一个 学生是这个集合的元素
第3章 集合 集合的元素是任意的对象,对象是可以独立存在的具体 的或抽象的客体。它可以是独立存在的数、字母、人或其它 物体,也可以是抽象的概念,当然也可以是集合。例如集合 1,2,3,1,2的元素3和1,2就是集合。 集合的元素又是无序的,即1,2,3和3,1,2是同一集合。 设S是集合,a是S的一个元素,记为aS,读做“ a属于 S”,也可读做“ a在S中”。如果a不是S的元素,记为aS, 读做“ a不属于S ”,也可读做“ a不在S中” 。 例如: ①26个英文字母组成一个集合,任一英文字母是该集合 的元素。 ②直线上的所有点组成实数集合R,每一个实数是集合R 的元素。 ③陕西科技大学全体学生组成一个集合,该校的每一个 学生是这个集合的元素
第3章集合 3.1.1集合的表示法 集合有三种表示法。 第一种表示法是列举法:在花括号“”中列举出 该集合的元素,元素之间用逗号隔开。 例如: 11,2,3,4,5} 14=1,2,3,…7 1=0,1,-1,2,-2,… ST,F 第二种表示法是描述法:用谓词界定集合的元素。 例如: Q-x|x是有理数} Rx|x是实数} C=xx是复数} A=x|x∈I∧0<x∧x<5
第3章 集合 3.1.1集合的表示法 集合有三种表示法。 第一种表示法是列举法:在花括号“”中列举出 该集合的元素,元素之间用逗号隔开。 例如: I5 =1,2,3,4,5 I+ =1,2,3, … I =0,1,-1,2,-2, … S=T,F 第二种表示法是描述法:用谓词界定集合的元素。 例如: Q=x | x是有理数 R=x | x是实数 C=x | x是复数 A=x | x I∧0<x∧x<5
第3章集合 若用P(x)表示x是有理数,那么Q又可表示为: xP(x) 般地说,集合可用描述法表示为: Sx|A(x)}其中,A(x)是谓词 显然,当a∈S时,则A(a为真;反之,当A(a)为真,则 a∈S。即a∈S的充分必要条件是A(a为真。 在中学的教科书中将自然数定义为: N=1,2,3,…} 这是对的。在离散数学中,认为自然数是由0开始的,即 N0,1,2,3,…7 我们把这种由0开始的自然数集叫做扩展的自然数集。 离散数学中使用扩展的自然数集。本书的自然数集是指扩 展的自然数集
第3章 集合 若用P(x)表示x是有理数,那么Q又可表示为: Q=x | P(x) 一般地说,集合可用描述法表示为: S=x | A(x) 其中,A(x)是谓词 显然,当aS 时,则A(a)为真;反之,当A(a)为真,则 aS。即aS的充分必要条件是A(a)为真。 在中学的教科书中将自然数定义为: N=1,2,3, … 这是对的。在离散数学中,认为自然数是由0 开始的,即 N=0,1,2,3, … 我们把这种由0 开始的自然数集叫做扩展的自然数集。 离散数学中使用扩展的自然数集。本书的自然数集是指扩 展的自然数集