二、极限的四则运算法则 定理3设limf(x)= A lim g(x)=B 则我们有以下运算法则: (1)limf(x)±g(x)=limf(x)±img(x) =A±B (2)limf(x).g(x)]=lim f(x). lim g(x) A·B (3)im f(x) limf(x)A X im(x)/b(B≠0) October 2004
October, 2004 二、极限的四则运算法则 定理 3 设 lim f x A ( ) = lim g x B ( ) = 则我们有以下运算法则: (1) lim[ ] f x( ) g x( ) = lim li f ( ) x m g(x) = A B (2) lim[ ] f x( ) g x( ) = lim li f ( ) x m g(x) = A B (3) ( im ) ( l f x) g x lim ( ) lim ( ) f x g x = B A = ( 0) B
lim f(x)=A lim g(x=b 证由第四节,定理1(极限与无穷小的关系) limf(x)=A冷>f(x)=A+a img(x)=B分g(x)=B+a,B是无穷小 (1)f(x)+g(x)=(4+a)+(B+B) =(A+B)+(a+B) a+B是无穷小 limn[f(x)±g(x) 再由第四节,定理1 =A+B October 2004
October, 2004 lim f x A ( ) = lim g x B ( ) = 证 由第四节,定理 1(极限与无穷小的关系) lim f x A ( ) = f x A ( ) = + lim g x B ( ) = g x B ( ) = + α , β 是无穷小 (1) f x g x ( ) ( ) + = + + + ( ) ( ) A B = + + + ( ) ( ) A B + 是无穷小 再由第四节,定理1 lim[ ] f x( ) g x( ) = + A B
imf(x)=A分>f(x)=A+a ,尸是无穷小 limg(x)=B分g(x)=B+B (2)f(x)·g(x)=(A+a)(B+B) = AB+(AB+Ba+aB) ∴AB+Ba+aB是无穷小 再由第四节,定理1lim[f(x)·g(x)=AB October 2004
October, 2004 lim f x A ( ) = f x A ( ) = + lim g x B ( ) = g x B ( ) = + α , β 是无穷小 (2) f x g x ( ) ( ) = + + ( )( ) A B = + + + AB A B ( ) 是无穷小 再由第四节,定理1 lim[ ] f x( ) g x( ) = AB A B + +