象3角18 233.1相似三角形
23.3.1 相似三角形
墓然回首 1、什么叫做全等三角形? 能够完全重合的两个三角形叫做全等三 角形。(如右图△ABC≌DEF E 2、全等三角形的对应边、对应角之间各 B 有什么关系? F C 对应边相等、对应角相等。 E DD 3、什么叫做相似多边形?什么叫做相似 多边形的相似比? 对应角相等,对应边成比例的两个多边形叫相 似多边形,相似多边形对应边的比叫做相似比
蓦然回首 1、什么叫做全等三角形? 能够完全重合的两个三角形叫做全等三 角形。(如右图△ABC≌DEF) 2、全等三角形的对应边、对应角之间各 有什么关系? 对应边相等、对应角相等。 3、什么叫做相似多边形?什么叫做相似 多边形的相似比? 对应角相等,对应边成比例的两个多边形叫相 似多边形,相似多边形对应边的比叫做相似比。 A B C D E A C A1 B1 E D1 1 F1 B C E D F
探究新知 定义:对应角相等、对应边成比例的 三角形叫做形状相同的图形,即相似 B 三角形。 这两个三角 表示法:∽,读作“相似王 怎样表示? 相似比:相似三角形对应边的比k叫做相似比或 相似系数(求相似三角形的相似比要注意顺序性) 如右图所示:ABC相似于△DEF就可表示为 △ABC∽△DEF 对应顶点一定要写在对应位置,这样可以准 确地找出相似三角形的对应角和对应边
探究新知 定义:对应角相等、对应边成比例的 三角形叫做形状相同的图形,即相似 三角形。 A B C E D F 表示法:∽ ,读作“相似于” 如右图所示:△ABC相似于△DEF就可表示为 △ABC∽△DEF 对应顶点一定要写在对应位置,这样可以准 确地找出相似三角形的对应角和对应边。 相似比:相似三角形对应边的比k叫做相似比或 相似系数(求相似三角形的相似比要注意顺序性)
想 想 A D B 1、如图所示如果△ADE∽△ABC,那么哪些角是对应角?哪 些边是对应边?对应角有什么关系?对应边呢? 对应角相等、对应边成比例 2、如果△ABC∽△A1B1C1.△A1B1C1△A2B2C2,那么 △ABC与4A2B2C2相似吗?为什么?由此可得相似三角 形有什么性质? 相似三角形有传递性
1、如图所示如果△ADE∽△ABC,那么哪些角是对应角?哪 些边是对应边?对应角有什么关系?对应边呢? 想一 想 2、如果△ABC∽△A1B1C1, △A1B1C1∽△A2B2C2,那么 △ABC与△A2B2C2相似吗?为什么?由此可得相似三角 形有什么性质? 对应角相等、对应边成比例 相似三角形具有传递性 A B C D E
议 【1】两个全等三角形一定相似吗?为什么?它与相似三角 形有什么关系? 两个全等三角形的对应边相等,对应角相等,由对应边相等可知对应 边一定成比例,且相似比为1,因此满足相似三角形的两个条件,F以 两个全等三角形一定相似。全等三角形是相似三角形的特殊形式! 2】两个直角三角形一定相似吗?两个等腰直角三角形呢? 为什么? 所有的直角三角形不都相似,如左图中的两 个直角三角形就不相似; 2、所有的等腰直角三角形都相似。因为每个等 腰直角三角形中都有一个直角,两个45°的角, 且两条直角边相等,斜边等于直角边的根号2倍, 所以任意两个等腰直角三角形的对应角相等,对 应边成比例。因此所有的等腰直角三角形都相似
【1】两个全等三角形一定相似吗?为什么?它与相似三角 形有什么关系? 【2】两个直角三角形一定相似吗?两个等腰直角三角形呢? 为什么? 两个全等三角形的对应边相等,对应角相等,由对应边相等可知对应 边一定成比例,且相似比为1,因此满足相似三角形的两个条件,所以 两个全等三角形一定相似。全等三角形是相似三角形的特殊形式! 1、所有的直角三角形不都相似,如左图中的两 个直角三角形就不相似; 2、所有的等腰直角三角形都相似。因为每个等 腰直角三角形中都有一个直角,两个45°的角, 且两条直角边相等,斜边等于直角边的根号2倍, 所以任意两个等腰直角三角形的对应角相等,对 应边成比例。因此所有的等腰直角三角形都相似。 2 2 议一议