行列式 第二节全排列及其逆序数 概念的引入 二、全排列及其逆序数 三、小结思考题
王-、概念的引入 引例用1、2、3三个数字,可以组成多少个没 有重复数字的三位数? 解 123 百位1□□2圆3□3种放法 牛+位2口3口 2种放法 生个①23 1种放法 共有3×2×1=6种放法 上页
一、概念的引入 引例 用1、2、3三个数字,可以组成多少个没 有重复数字的三位数? 解 1 2 3 百位 1 2 3 3种放法 十位 1 2 1 3 个位 1 2 3 2种放法 1种放法 共有 3 21 = 6 种放法
二、全排列及其逆序数 间题把n个不同的元素排成一列,共有几种不 同的排法? 定义把n个不同的元素排成一列,叫做这n个 元素的全排列(或排列) n个不同的元素的所有排列的种数,通常 用P表示 由引例P3=321=6 同理P=n·(n-1)·(n-2)…3·2·1=n 上页
二、全排列及其逆序数 同的排法? 问题 把 n 个不同的元素排成一列,共有几种不 定义 把 个不同的元素排成一列,叫做这 个 元素的全排列(或排列). n n 个不同的元素的所有排列的种数,通常 用 表示. n Pn 由引例 P3 = 3 2 1 = 6. 同理 Pn = n (n − 1) (n − 2) 3 2 1 = n!
排列的逆序数 我们规定各元素之间有一个标准次序,n个 不同的自然数,规定由小到大为标准次序 定义在一个排列(i2…i…i…i)中,若数 i,>i,则称这两个数组成一个逆序 例如排列32514中, 工工工 逆序 逆序逆序 上页
在一个排列 中,若数 则称这两个数组成一个逆序. ( ) t s n i i i i i 1 2 t s i i 例如 排列32514 中, 定义 我们规定各元素之间有一个标准次序, n 个 不同的自然数,规定由小到大为标准次序. 排列的逆序数 3 2 5 1 4 逆序 逆序 逆序
定义一个排列中所有逆序的总数称为此排列的 逆序数 例如排列32514中, 0 01 ③2s14 1逆序数为3 故此排列的逆序数为3+1+0+1+0=5 上页
定义 一个排列中所有逆序的总数称为此排列的 逆序数. 例如 排列32514 中, 3 2 5 1 4 1 逆序数为3 0 0 1 故此排列的逆序数为3+1+0+1+0=5