第四节 曲面与曲线 曲面及其方程 曲面方程的概念 二、 旋转曲面 三、柱面 四、二次曲面 HIGH EDUCATION PRESS 机动目录上页下页返回结束
四、二次曲面 第四节 一、曲面方程的概念 二、旋转曲面 三、柱面 机动 目录 上页 下页 返回 结束 曲面及其方程 曲面与曲线
曲面方程的概念 引例:求到两定点4(1,2,3)和B(2,-1,4)等距离的点的 轨迹方程 解:设轨迹上的动点为M(x,y,z),则AM=BM,即 V(x-1)2+(y-2)2+(z-3)2 =(x-2)2+(y+1)2+(z-4) 化简得2x-6y+2z-7=0 说明:动点轨迹为线段AB的垂直平分面! 显然在此平面上的点的坐标都满足此方程, 不在此平面上的点的坐标不满足此方程, HIGH EDUCATION PRESS 机动目录上页下页返回结束
一、曲面方程的概念 求到两定点A(1,2,3) 和B(2,-1,4)等距离的点的 2 2 2 (x −1) + (y − 2) + (z − 3) 化简得 2x − 6y + 2z − 7 = 0 即 说明: 动点轨迹为线段 AB 的垂直平分面. 引例: 显然在此平面上的点的坐标都满足此方程, 不在此平面上的点的坐标不满足此方程. 2 2 2 = (x − 2) + ( y +1) + (z − 4) 解:设轨迹上的动点为 M (x, y,z),则 AM = BM , 轨迹方程. 机动 目录 上页 下页 返回 结束
定义1.如果曲面S与方程F(x,yz)=0有下述关系 (1)曲面S上的任意点的坐标都满足此方程, (2)不在曲面S上的点的坐标不满足此方程 则F(x,yz)=0叫做曲面S的方程 F(x,y,2)=0 曲面S叫做方程F(x,yz)=0的图形 两个基本问题: (1)已知一曲面作为点的几何轨迹时 求曲面方程 (2) 已知方程时,研究它所表示的几何形状(曲面) (必要时需作图) HIGH EDUCATION PRESS 机动目录上页下页返回结束
定义1. F(x, y,z) = 0 S z y x o 如果曲面 S 与方程 F( x, y, z ) = 0 有下述关系: (1) 曲面 S 上的任意点的坐标都满足此方程; 则 F( x, y, z ) = 0 叫做曲面 S 的方程, 曲面 S 叫做方程 F( x, y, z ) = 0 的图形. 两个基本问题 : (1) 已知一曲面作为点的几何轨迹时, (2) 不在曲面 S 上的点的坐标不满足此方程, 求曲面方程. (2) 已知方程时 , 研究它所表示的几何形状(曲面). ( 必要时需作图 ) 机动 目录 上页 下页 返回 结束
例1.求动点到定点M0(x0,0,20)距离为R的轨迹 方程 特别,当M在原点时,球面方程为 x2+y2+2=R2 z=士√R2-x2-y2表示上(下球面 HIGH EDUCATION PRESS 机动目 下页返回结束
例1. 求动点到定点 方程. 特别,当M0在原点时,球面方程为 距离为 R 的轨迹 x y z o M 表示上 M0 (下)球面 . 2 2 2 2 x + y + z = R 机动 目录 上页 下页 返回 结束
例2.研究方程x2+y2+z2-2x+4y=0表示怎样 的曲面 说明:如下形式的三元二次方程(A丰0) A(x2+y2+22)+Dx+Ey+Fz+G=0 都可通过配方研究它的图形.其图形可能是 一个球面,或点,或虚轨迹 HIGH EDUCATION PRESS 机动目录上页下页返回结束
例2. 研究方程 说明: 如下形式的三元二次方程 ( A≠ 0 ) 都可通过配方研究它的图形. 其图形可能是 的曲面. 表示怎样 一个球面 , 或点 , 或虚轨迹. 机动 目录 上页 下页 返回 结束