Extremal Combinatorics "How large or how small a collection of finite objects can be,if it has to satisfy certain restrictions." graphs set systems(hypergraphs)
Extremal Combinatorics “How large or how small a collection of finite objects can be, if it has to satisfy certain restrictions.” graphs set systems (hypergraphs)
Set Systems(Families) family:F2 ground set: [n] F has a particular property >?≤F|≤?
Set Systems (Families) F 2[n] family: ground set: [n] F has a particular property ? |F| ?
Antichains F2 is an antichain {1,2,3} VA,B∈F,AEB 《1.213}23} (is antichain } {2 3} largest size:(m2l) “Is this the largest size for all antichains?
Antichains ∅ {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3} {1,2} {1,3} {2,3} ⌅A, B ⇥ F, A ⇤ B F 2 is an antichain [n] [n] k ⇥ is antichain largest size: n n/2⇥ ⇥ “Is this the largest size for all antichains?
Sperner's Theorem Theorem(Sperner 1928) F C 2 is an antichain. (2) Emanuel Sperner (1905-1980)
'$# $"$"$ ($'' ($ 2 $$#$'# ($* 0 )$""#"$#$*# 2 '$ .% .$0"#$ 1 ''$" '$'$$$ ' - $$"*#' ($$#0 ('+ ' ($$#'+ ($'"$ $$#0 3/4 ,'$#$!$$"##" 2 - "$ 0 $##$$'# ( $ $$$'# 0 )$ $#$$$7 #$#+$'# $## -$* $$" ! " 0!$'$&'' ('$#*6$34 8"#$ $$$ ! ! " " ! " 05'"$$$ #$0 ! ! " " ! '$##"+$ (##+ ($ (#$'#$0 ($$ ($$$0 "$ " ≤ ! ! " " 0!$" ( ∅ ⊂ ⊂ ⊂ ⊂ +" 0"'$$$7 #$#+" ($ $$ ($ (#' +$$'$ $$$'$ +$'# 0 &+$ ∈ "$!"'$$$ 0$$0 ' ∅ "$ $#' (+$$ ' "$ $'$#'0 $ #'+ ($##$$#! " $$# − $0 $$$ $" $ + $$$0 '#+# # (' ( - 0 0##"'$' ($ $''' ( $ − $&$&' ( $0 |F| n ⇤n/2⌅ ⇥ . Theorem (Sperner 1928) |F| n ⇤n/2⌅ ⇥ . Theorem (Sperner 1928) F 2[n] is an antichain. Sperner’s Theorem Emanuel Sperner (1905 - 1980)
Sperner's proof {1,2,3} {1,2,3} {1,2} {1,3} {2,3} {1,2} {13} 23} 1 {2} 3} 1) 2} 3) 0 0
Sperner’s proof ∅ {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3} ∅ {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}