在研究级数时,中心问题是判定级数的敛散 性,如果级数是收敛的,就可以对它进行某些 运算,并设法求出它的和或和的近似值但是除 了少数几个特殊的级数,在一般情况下,直接 考察级数的部分和是否有极限是很困难的,因 而直接由定义来判定级数的敛散性往往不可行 ,这就要借助一些间接的方法来判定级数的敛 散性,这些方法称为审敛法 对常数项级数将分为正项级数和任意项级数 来讨论
文件格式: PPT大小: 0.99MB页数: 38
由于幂级数在收敛域内确定了一个和函 数,因此我们就有可能利用幂级数来表示函 数。如果一个函数已经表示为幂级数,那末 该函数的导数、积分等问题就迎刃而解
文件格式: PPT大小: 374KB页数: 25
一、主要内容 1、导数的定义 2、基本导数公式(常数和基本初等函数的导数公式)常、反、对、幂、指、三、双曲——18个公式 3、求导法则
文件格式: PPT大小: 1.28MB页数: 34
前面两节我们讨论了一般项是非负整数次幂的 幂函数的函数项级数------幂级数,给出了幂级数 的收敛半径和收敛域的求法,讨论了函数展开为 幂级数的条件及函数展开为幂级数的直接展开法、 间接展开法。 从本节开始我们来讨论一般项是三角函数的函 数项级数------三角级数,重点讨论如何把函数展 开为三角级数的问题,它的重要应用之一是对周 期信号进行频谱分析,是学习积分变换的基础
文件格式: PPT大小: 705.5KB页数: 42
一、周期为 2L 的周期函数展开成 Fourier 级数 前面我们所讨论的都是以 2为周期的函数 展开成Fourier 级数,但在科技应用中所遇到的 周期函数大都是以 T 为周期,因此我们需要讨论 如何把周期为T = 2 l 的函数展开为Fourier级数 若f ( t )是以T = 2 l 为周期的函数,在[ -l , l ) 上满足Dirichlet 条件
文件格式: PPT大小: 562.5KB页数: 29
一、平面图形的面积 1直角坐标系 作为一般情况讨论,设平面图形由a,b] 上连续的两条曲线y=f(x)与y=g(x) (f(x)≥g(x)及两条直线x=ax=b所围成 在[a,b]上任取典型小区间[x,x+dx 与它相对应的小曲边梯形的面积为局部量dA
文件格式: PPT大小: 858KB页数: 37