西安交通大学EEANJIAOTONGUNIVEESITY典型两阶系统的瞬态响应3.3二阶系统的阶跃响应上述四种情况分别称为二阶无阻尼、欠阻尼、临界阻尼和过阻尼系统。其阻尼系数、特征根、极点分布和单位阶跃响应如下表所示:特征根极点位置阻尼系数单位阶跃响应一对共轭虚根等幅周期振荡Si,2 =±jn=0,无阻尼一对共轭复根(左衰减振荡Si2=-So,± jon Vi-0<<1,欠阻尼半平面)一对负实重根单调上升=1,临界阻尼S1,2=-0,(重根)>1,过阻尼单调上升两个互异负实根S,2 =-50, FO, /52-117
17 3.3 二阶系统的阶跃响应 上述四种情况分别称为二阶无阻尼、欠阻尼、临界阻尼和 过阻尼系统。其阻尼系数、特征根、极点分布和单位阶跃响应 如下表所示: 阻尼系数 特征根 极点位置 单位阶跃响应 两个互异负实根 单调上升 一对负实重根 单调上升 一对共轭复根(左 衰减振荡 半平面) = 0,无阻尼 一对共轭虚根 等幅周期振荡 n s1,2 = j o 1,欠阻尼 2 s1,2 = −n jn 1− =1,临界阻尼 ( ) s1,2 = −n 重根 1,过阻尼 1 2 s1,2 = −n n − 典型两阶系统的瞬态响应
西安交通大学IE'ANJLAROTONAENIVEESTY典型两阶系统的瞬态响应3.3二阶系统的阶跃响应C(t)2C=01.80.10.41.60.50.21.40.60.31.20.710.80.8S=20.60.90.41.00.2Ont1.50024126810可以看出:随着的增加,c(t)将从无衰减的周期运动变为有衰减的正弦运动,当≥1时c(t)呈现单调上升运动(无振荡)。18可见反映实际系统的阻尼情况,故称为阻尼系数
18 3.3 二阶系统的阶跃响应 可以看出:随着 的增加,c(t)将从无衰减的周期运动变为有 衰减的正弦运动,当 时c(t)呈现单调上升运动(无振荡)。 可见 反映实际系统的阻尼情况,故称为阻尼系数。 1 0 2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 = = nt C(t) 典型两阶系统的瞬态响应
西安交通大学EEANJLAROTONAENIVEESTY3.3二阶系统的阶跃响应亮减振荡瞬态过程的性能指标三、典型二阶系统的性能指标及其与系统参数的关系(一)衰减振荡瞬态过程(0<<1)c(t) =1-e-So n (cosOdt +sin のdt), t≥0V1-21.上升时间t,:根据定义,当t=t.时,c(tr)=1。Sc(t) =1-e-So ,t, (cos Odtr +sin @atr)=121Ssin dtr = 0cosodtr +V1-21-<2tgodt解得:C19Od
19 3.3 二阶系统的阶跃响应 三、典型二阶系统的性能指标及其与系统参数的关系 2 1 tg − d t r = − (一)衰减振荡瞬态过程 (0 1) : sin ), 0 1 ( ) 1 (cos 2 − = − + − c t e t t t d d t n ⒈ 上升时间 t r :根据定义,当 t = t r 时, c(t r ) =1 。 sin ) 1 1 ( ) 1 (cos 2 = − = − + − d r d r t c t e t t n r sin 0 1 cos 2 = − d r + d r t t 解得: ) 1 ( 1 2 1 − = − − t tg d r 衰减振荡瞬态过程的性能指标
西安交通大学EE'ANJLAOTONAENIVEESTY3.3二阶系统的阶跃响应衰减振荡瞬态过程的性能指标jo,V1-2tgOdLα=180°-β&3Stg(元-β) :0C元-β元-β00β称为阻尼角,这是由于cosβ=20
20 3.3 二阶系统的阶跃响应 n 2 jn 1− 2 − jn 1− −n 称为阻尼角,这是由于 cos = 。 2 2 1 1 ( ) − = − − − − = n n t g 2 1 − − = − = n d r t ) 1 ( 1 2 1 − = − − t tg d r = − − − − ) 1 ( 2 1 tg ) 1 ) ( 1 ( 2 1 2 1 n n t g t g − − = − = − − − =180 − 衰减振荡瞬态过程的性能指标
西安交通大学EARLROTONGNIVEESTY3.3二阶系统的阶跃响应衰减振荡瞬态过程的性能指标2.峰值时间t,:当t=t,时,c(t,)=0其中β=tgsin(dt +β), t ≥050Sotc(t) =Od ·cos(odtp + β)= 0sin( Odtp +β)SOn sin( Odtp + β)-Od ·cos(Odt p + β)= 00d_o,/1-52 - /1-52tg(Oat, + β)==tgβ整理得:Son5Lon(n = 0,1,2,..),=n元Oat,元元由于t,出现在第一次峰值时间,取n=1,有:t,=21
21 3.3 二阶系统的阶跃响应 ⒉ 峰值时间 t p :当 t = t p 时, c(t p ) = 0 cos( ) 0 1 sin( ) 1 ( ) 2 2 + = − + − − − = − − − d d p t d p t n t e t e c t n p n p n d d p tg t 整理得: ( + ) = t = n (n = 0,1,2,.) d p 由于 出现在第一次峰值时间,取n=1,有: d n p t = − = 2 1 p t sin( ), 0 1 ( ) 1 2 + − = − − t t e c t d t n 2 1 1− = − 其中 tg sin( + ) − cos( + ) = 0 n d p d d p t t = tg − = 2 1 n n 2 1− = 衰减振荡瞬态过程的性能指标