矩阵简化记法 0b2…b 1-b2 b b10…bn01…0|-b -b B b-b a1 C21a22 a2n=I-D-'A m八( an1 an2 C T 同样 g1g2…∵,gn (b1/a1,b2/a22,…,bn/am)=Db
矩阵简化记法 1 1 1 0 0 1 0 1 0 1 0 0 0 0 0 1 2 21 2 12 1 1 2 21 2 12 1 b b b b b b b b b b b b n n n n n n n n B I- D A a a a a a a a a a a a a I nn 1 n1 n2 nn 21 22 2n 11 12 1n 1 1 22 1 11 1 1 2 1 11 2 22 ( , , , ) ( , , , ) T T n n nn g g g g b a b a b a D b 同样
收敛与解 Jacobi迭代x (n+1) B x +8 n 0,1,2, 若收敛 (k) x}→>x 则 x =bx +g (I-B)x DA D b X b 故如果序列收敛,则收敛到解.B称迭代矩阵
收敛与解 1 * * * n 0 1 2 { } B g n n k Jacobi x B x g x x x x ( ) ( ) ( ) 迭 代 ,, , 若 收 敛 ,则 * 1 * 1 * (I B ) x g D A x D b A x b 即 故如果序列收敛, 则收敛到解.B 称迭代矩阵
10x1-x2-2x3=72 例:用co迭代法求解{-x1+10x-2x3=83 x1-x2+5x2=42 0+x2+2x2+72 10 解:原方程可变形为 (x1+0+2x3+83 10 x3=(x+x2+0+42)
1 2 3 1 2 3 1 2 3 1 2 3 2 1 3 3 1 2 10 2 72 10 2 83 5 42 1 0 2 72 10 1 0 2 83 10 1 0 42 5 x x x Jacobi x x x x x x x x x x x x x x x 例:用 迭代法求解 解:原方程可变形为
2 1010 00.10.2 B= ×2=0.1002 10 0.20.20 ×72×83×42=(728384 10
0 1 2 0 0.1 0.2 1 0 2 0.1 0 0.2 0.2 0.2 1 1 10 10 0 1 1 0 1 1 10 10 1 72 83 42 7.2 8.3 8.4 1 1 1 1 5 5 1 0 10 5 T T B g = =
B=/-DA 00 100 10 10-1-200102 0100 0‖1-110-2=0.1002 10 001 -1-1502020 00 g=Db=(72,83,84)
1 (7.2,8.3,8.4) T g D b 1 1 0 0 10 1 0 0 10 1 2 0 0.1 0.2 1 0 1 0 0 0 1 10 2 0.1 0 0.2 10 0 0 1 1 1 5 0.2 0.2 0 1 0 0 5 B I D A