/数
观察(1)把其中一个图案绕点O旋转180°, 你有什么发现? (2)线段AcBD相交于点O,OA=oc,OB=OD把 △OAB绕点O旋转180°,你有什么发现? A D (2) C 重合 重合 (1)
(1)把其中一个图案绕点O旋转180° , 你有什么发现? 重合 重合 观察 (2)线段AC,BD相交于点O,OA=OC,OB=OD.把 △OAB绕点O旋转180° ,你有什么发现?
中心对称的定义: 把一个图形绕着某 点旋转180度如果它能 够和另一个图形重合, 那么,我们就说这两个 图中心对称。 对称中心 E 这个点就叫对称中心,这 两个图形中的对应点,叫 做关于中心的对称点 观察:两个图形关系如何?CAE三点的位 置关系怎样线段ACAE的大小关系呢?
A C B D E 把一个图形绕着某一 点旋转180度,如果它能 够和 另一个图形重合, 那么,我们就说这两个 图中心对称。 观察:两个图形关系如何?C.A.E三点的位 置关系怎样?线段AC.AE的大小关系呢? D E 中心对称的定义: 这个点就叫对称中心,这 两个图形中的对应点,叫 做关于中心的对称点. 对称中心 A
探索 下图中△A′C′与△ABC 关于点0是成中心对称的, 你能从图中找到哪些等量 关系? 二 (1)OA=oA、OB=OB、OC=oc (2)△ABc△AB℃
下图中△A′B′C′与△ABC 关于点O是成中心对称的, 你能从图中找到哪些等量 关系? (1)OA=OA′、OB=OB′、 OC=OC′ (2)△ABC≌△A′B′C′
中心对称的性质 1、在成中心对称的两个图形中连接对称 点的线段都经过对称中心并且被对称中心 平分 反过来如果两个图形的对应点连成的线段都 经过某一点,并且都被该点平分,那么这两个图形 一定关于这一点成中心对称 2、关于中心对称的两个图形是全等形
中心对称的性质: 1、在成中心对称的两个图形中,连接对称 点的线段都经过对称中心,并且被对称中心 平分. 2、关于中心对称的两个图形是全等形。 反过来,如果两个图形的对应点连成的线段都 经过某一点,并且都被该点平分,那么这两个图形 一定关于这一点成中心对称