第1节目标规划的数学模型 ·为了具体说明目标规划与线性规划在处 理问题方法上的区别,先通过例子来介 绍目标规划的有关概念及数学模型
第1节 目标规划的数学模型 • 为了具体说明目标规划与线性规划在处 理问题方法上的区别,先通过例子来介 绍目标规划的有关概念及数学模型
例1 某工厂生产I,Ⅱ两种产品,已知有关数据 见下表。试求获利最大的生产方案。 I II 拥有量 原材料(kg) 2 1 11 设备(hr) 1 2 10 利润(元/件) 8 10
例1 Ⅰ Ⅱ 拥有量 原材料(kg) 设备(hr) 2 1 1 2 11 10 利润(元/件) 8 10 某工厂生产Ⅰ,Ⅱ两种产品,已知有关数据 见下表。试求获利最大的生产方案
解: •这是求获利最大的单目标的规划问题 用x1,x2分别表示I,Ⅱ产品的产量 •其线性规划模型表述为: 目标函数:maxz=8x1+10x2 2x1+x2≤11 满足约束条件:了x1+2x2≤10 1,2≥0
解: ⎪ ⎩ ⎪ ⎨ ⎧ ≥ ≤+ ≤+ = + 0, 102 2 11 108max 21 21 21 21 xx xx xx xxz 满足约束条件: 目标函数: •这是求获利最大的单目标的规划问题 • 用x1 ,x2分别表示Ⅰ,Ⅱ产品的产量 •其线性规划模型表述为:
用图解法求得最优决策方案为: x1*=4,x2*-3,z=62(元)。 日标函数:maxz=8x1+10x2 2x1+x2≤11 满足约束条件: 1+2x2≤10 1,x2≥0 (4,3)
用图解法求得最优决策方案为: x 1 *=4, x 2 *=3, z *=62( 元 ) 。 ⎪ ⎩ ⎪ ⎨ ⎧ ≥ ≤+ ≤+ = + 0, 102 2 11 108max 21 21 21 21 xx xx xx xxz 满足约束条件: 目标函数: (4,3)
实际上工厂在作决策时 要考虑市场等一系列其他条件: (1)根据市场信息,产品I的销售量有下 降的趋势,故考虑产品I的产量不大于 产品Ⅱ。 (2)超过计划供应的原材料时,需用高价 采购,会使成本大幅度增加。 (3)应尽可能充分利用设备台时,但不希 望加班 (4)应尽可能达到并超过计划利润指标56 元
实际上工厂在作决策时 (1) 根据市场信息,产品Ⅰ的销售量有下 降的趋势,故考虑产品Ⅰ的产量不大于 产品Ⅱ。 (2) 超过计划供应的原材料时,需用高价 采购,会使成本大幅度增加。 (3) 应尽可能充分利用设备台时,但不希 望加班 (4) 应尽可能达到并超过计划利润指标56 元 要考虑市场等一系列其他条件: