2:=1+int(x*y1,x=0..x); y3:=1+int(x*y2,x=0,,x); 4:=1+int(x*y3,x=0.,x); y4:=1+ 3844882 从2..8题只给答案(过程如1,均迭代三步或者四步) 4400 270 630 180 5)y3:=1+13e+4x+4e+ 16 y=1-cos 2x+-x-2sinx--sin 2x 6) 7) 44 3 30316 177 y3:=1+ 7546 4900 3675 833 6125 1225 1225 243 万5x2+00x2+1925x 07868 12
y1 := 1 + 1 2 x2 y2:=1+int(x*y1,x=0..x); y2 := 1 + + 1 8 x4 1 2 x2 y3:=1+int(x*y2,x=0..x); y3 := 1 + + + 1 48 x6 1 8 x4 1 2 x2 y4:=1+int(x*y3,x=0..x); y4 := 1 + + + + 1 384 x8 1 48 x6 1 8 x4 1 2 x2 从 2…8 题只给答案(过程如 1,均迭代三步或者四步) 2) y4 := 1 + + + + + x2 x 1 3 x3 1 12 x4 1 120 x5 3) y3 := 1 + + + + + + + + + + 1 4400 x11 1 270 x9 1 160 x8 19 630 x7 13 180 x6 11 60 x5 5 12 x4 2 3 x3 3 2 x2 x 4) y3 := 1 + + + + + + + + + + 1 160 x10 1 27 x9 25 288 x8 1 6 x7 25 72 x6 7 15 x5 1 2 x4 2 3 x3 1 2 x2 x 5) y3 := 1 13 + + + + + ex 4 x 4 e ( ) 2 x 1 16 e ( ) 4 x e ( ) 3 x 6) 3 1 1 cos 2 2sin sin 2 2 4 y =− + − − xx x x 7) y3 1 1 7546 x22 9 4900 x20 44 3675 x18 3 833 x17 303 6125 x16 47 1225 x15 177 1225 x14 := + + + + + + + 33 175 x13 243 700 x12 1119 1925 x11 269 350 x10 43 35 x9 207 140 x8 68 35 x7 23 10 x6 12 5 x5 + + + + + + + + + 5 2 x4 2 x3 5 2 x2 + + + + x 8)
576 1089 744576 x26+8x3+3x2+27x4 12728 y3:=1+x+ 2875 10+8+18936 12357 120249 x7+223x6 sx10.424984 5164842 3790000810311685716816105617346727714041264 2375 125 2125 +6928X446517872x3+341713x12+46531+74567 2.1)y(x)=1+x+x2+ +O(x 2)y(x)=4+32x+256x2+6145491564655424 x3+o(x°) 5 3)y(x)=x2+x3+11 x>+o(x°) 4)y(x)=x+x3+x3+o(x7) 5)y(x)=x+x2+x31x+x) 7 4 2)y=1+3(x-1)+5(x-1)+8(x-1) 1+x 3)y=2 4)1+2(x-1) 4.(参阅以下程序,只做第一题,其他类似) 1)>printlevl:=0; printer/: =0 >h:=0.1; h:=.1 0:=0 >y0:=1; >f1:=(x,y)->-2*y+x^3*exp(-2*x);
y3 1 x 576 125 x25 1089 25 x24 744576 2875 x23 3 13 x26 8 x3 3 x2 27 x4 12728 5 x9 := + + + + + + + + + 12357 10 x8 18936 35 x7 223 x6 432 5 x5 120249 25 x10 424984 125 x21 5164842 625 x20 + + + + + + + 37900008 2375 x19 3116857 125 x18 68161056 2125 x17 3467277 100 x16 4041264 125 x15 + + + + + 668928 25 x14 6517872 325 x13 341713 25 x12 465336 55 x11 7458678 6875 x22 + + + + + 2.1) ( ) 60 1 12 1 3 1 ( ) 1 2 3 4 5 6 y x = + x + x + x + x x + o x 2) ( ) 5 655424 3 49156 3 6145 ( ) 4 32 256 2 3 4 5 6 y x = + x + x + x + x + x + o x 3) ( ) 120 1 24 1 6 1 2 1 ( ) 2 3 4 5 6 y x = x + x + x + x + o x 4) ( ) 30 1 3 1 ( ) 3 5 7 y x = x + x + x + o x 5) ( ) 120 23 12 1 6 1 ( ) 2 3 4 5 6 y x = x + x + x − x − x + o x 3.1) 2 3 ( 1) 3 14 ( 1) 2 7 y = 1+ 2(x −1) + x − + x − 2) 2 3 y = 1+ 3(x −1) + 5(x −1) + 8(x −1) 3) 2 1 x y + = 4) 2 2 3( 1) 1 2( 1) − + − + x x 4.(参阅以下程序,只做第一题,其他类似) 1) > printlevl:=0; printlevl := 0 > h:=0.1; h := .1 > x0:=0; x0 := 0 > y0:=1; y0 := 1 > z0:=1; z0 := 1 > f1:=(x,y)->-2*y+x^3*exp(-2*x);
-2 f2:=(x,y)->3*X^2*exp(-2*x)-2*x^3*exp(-2*x)+2*(x^3*exp(-2★ x)-2*y(x)) n2=(x,y)→3X2e-4y(x) for n from o to 9 do:xII(n+1):=h*(n+1)i >yII(n+1): =yI In+h*fl(xI In yl in)i >z||(n+1):=z||n+h*f1(x||n,z|n)+h^2*f2(x|n,ylIn)/2; >print(xI I(n+1),yl l(n+1),zl l(n+1))iod: ,,8,7800000015000000 2,6400818731.6080818731+.02428096130X2 3,51260175454742001170+.02947956973X2 4,41156319503705898499+.03181583032 5,33212626142911163214+03219259872X2 6,2702995021,2308490249+.03127227060X 7,22274539671857790249+02953572966X2 8,1866545932.1526265879+02732753819X2 9,1596607763.1287052801+.02489047832X2 1.0,13977891001118212975+02239186598X2 5.只做第一题,其它类似 )>printlevl: =0 printlev /: =0 h:=0.1 h:=.1 x0:=0 0
f1 := ( ) x y, → − + 2 y x3 e ( ) −2 x > f2:=(x,y)->3*X^2*exp(-2*x)-2*x^3*exp(-2*x)+2*(x^3*exp(-2* x)-2*y(x)); f2 := ( ) x y, → 3 X − 2 e ( ) −2 x 4() y x > for n from 0 to 9 do;x||(n+1):=h*(n+1); > y||(n+1):=y||n+h*f1(x||n,y||n); > z||(n+1):=z||n+h*f1(x||n,z||n)+h^2*f2(x||n,y||n)/2; > print(x||(n+1),y||(n+1),z||(n+1));od: > > .1 .8 , , .7800000000 .01500000000 + X2 .2 .6400818731 , , .6080818731 .02428096130 + X2 .3 .5126017545 , , .4742001170 .02947956973 + X2 .4 .4115631950 , , .3705898499 .03181583032 + X2 .5 .3321262614 , , .2911163214 .03219259872 + X2 .6 .2702995021 , , .2308490249 .03127227060 + X2 .7 .2227453967 , , .1857790249 .02953572966 + X2 .8 .1866545932 , , .1526265879 .02732753819 + X2 .9 .1596607763 , , .1287052801 .02489047832 + X2 1.0 .1397789100 , , .1118212975 .02239186598 + X2 5.只做第一题,其它类似 1)> printlev1:=0; printlev1 := 0 > h:=0.1; h := .1 > x0:=0; x0 := 0 > y0:=2; y0 := 2
z0:=2 >f1:=(x,y)->28*exp(4*x); n=(x,y)→28c43 >f2:=(x,Y)->28*exp(4*x)+3*(7*exp(4*x)-3*y); P=(x,y)→49c3-9y for n fromo to 9 do >x||(n+1):=h*(n+1); >yII(n+1):=yI In+h*fl(xlIn, yI In) >z||(n+1):=z||n+h*f1(x||n,z||n)+h^2*f2(xl|n,yln)/2; >print(xll(n+1),yll(n+1),zl(n+1)); >。d 1,4.8,4.955000000 .2,8.9771091549.281606205 3,15.20862375,15.65440842 4,24.50495113,25.07977638 .5,38.3734419239.05903731 6,59.062799005983190825 7,899276928690.73965437 8,135.9727038136.7668576 9.204.6637884.205.3496404 1.0,307.1388448307.5813938 返回目录 答案27 l)dydx=(y2-x2)(2xy),所求得正交轨线满足微分方程:dydx=2xy/(x2-y2 解该微分方程:hn2-ln )-Inx+C=0 2)dydx=yx所求得正交轨线满足微分方程:dydx=xy 解该微分方程:y2-x2+c=0 3)dy/dx=xy(x2-1)所求得正交轨线满足微分方程: dy/dx=(1-x2(xy), 解该微分方程:y2-2lnx+x2+c=0 4)dy/dx= olny/x,所求得正交轨线满足微分方程:dydx=x(ymny) 解该微分方程:121,1-4+c=0
> z0:=2; z0 := 2 > f1:=(x,y)->28*exp(4*x); f1 := ( ) x y, → 28 e ( ) 4 x > f2:=(x,y)->28*exp(4*x)+3*(7*exp(4*x)-3*y); f2 := ( ) x y, → 49 e − ( ) 4 x 9 y > for n from 0 to 9 do; > x||(n+1):=h*(n+1); > y||(n+1):=y||n+h*f1(x||n,y||n); > z||(n+1):=z||n+h*f1(x||n,z||n)+h^2*f2(x||n,y||n)/2; > print(x||(n+1),y||(n+1),z||(n+1)); > od: .1 4.8 4.955000000 , , .2 8.977109154 9.281606205 , , .3 15.20862375 15.65440842 , , .4 24.50495113 25.07977638 , , .5 38.37344192 39.05903731 , , .6 59.06279900 59.83190825 , , .7 89.92769286 90.73965437 , , .8 135.9727038 136.7668576 , , .9 204.6637884 205.3496404 , , 1.0 307.1388448 307.5813938 , , 返回目录 答案 2.7 1. 1)dy/dx=(y2-x2)/(2xy),所求得正交轨线满足微分方程:dy/dx=2xy/(x2-y2), 解该微分方程:ln ln( ) ln 0 2 2 2 − + = + − x c x x y x y 2)dy/dx=-y/x,所求得正交轨线满足微分方程:dy/dx=x/y, 解该微分方程: 0 2 2 y − x + c = 3)dy/dx=xy/(x2 -1),所求得正交轨线满足微分方程:dy/dx=(1-x2 )/(xy), 解该微分方程: 2ln 0 2 2 y − x + x + c = 4) dy/dx=ylny/x,所求得正交轨线满足微分方程:dy/dx=-x/(ylny), 解该微分方程: 0 4 1 ln 2 1 2 1 2 2 2 x + y y − y + c =
2. dy/dx=(H(x, y)+tana (1-H(x, y )tana 1)满足与己知曲线族相交成45度角的曲线族满足如下的微分方程 dy/dx=3,解得:y=3x+c 2)满足与已知曲线族相交成45度角的曲线族满足如下的微分方程: +2xy-x dy/dx=(x-y)(x+y)解得:ln +Inx+c=0 3)满足与己知曲线族相交成45度角的曲线族满足如下的微分方程: dk=1.2x解得:y=-x+2(-na)+c 4)满足与已知曲线族相交成45度角的曲线族满足如下的微分方程 dxdy=(y+2*a)(2*a-y),解得:x+y+4aln(y-2a)=c 3抛物线族满足的微分方程:dydx=2clx,dydx=2(y-k)x椭圆曲线族满足的微分方程: dydx=2x(4y-1);两者正交,则k=1/2 4两曲线族的所满足的微分方程为:ddx=yk2,d/dx=x2y2,两者正交则n=3 5给定的双曲线满足微分方程dy/dx=xy,所求得曲线满足微分方程dy/dx=(2x+y)(2y-x) y(O)=1,解得:y=(x+√5x2+4) 6.设物体下落过程中任意时刻的速度为v(t,则根据牛顿运动定律,我们得到微分 方程: mddt=3mg/4kv,由物体的极限速度为24m/s,我们得到k=mg/32,v(0=0, 则我们解得:v()=24(1-e6),v(3)=24(1-e5 7设物体任意时刻的运动v(t),根据牛顿运动定律,我们得到微分方程: 20dvdt=10v(t)2,v(0)=7我们得到:v()=10-3e 8.设物体任意时刻的运动vt),我们设T时刻物体到达最高点,我们仅仅考虑 (0,T),根据牛顿运动定律,我们得到微分方程10dvd=mg+k2根据题目中的条 件我们得到:k=2(0=V我们得到:v()=5√2g(2+ arct-) 很容易我们就得到:v(T=0,T= arctan(vov2/10√2 9.设任意时刻该人在银行的存款为也y(t)y(O=20,000满足微分方程
2.dy/dx=(H(x,y)+tanα )/(1-H(x,y)tanα ) 1) 满足与已知曲线族相交成45度角的曲线族满足如下的微分方程: dy/dx=3,解得: y = 3x + c 2) 满足与已知曲线族相交成45度角的曲线族满足如下的微分方程: dy/dx=(x-y)/(x+y),解得: ln 0 2 ln 2 1 2 2 2 + + = + − x c x y xy x 3) 满足与已知曲线族相交成45度角的曲线族满足如下的微分方程: dy/dx=-1-2/lnax,解得: c a Ei ax y x + − = − + 2 (1, ln ) 4) 满足与已知曲线族相交成45度角的曲线族满足如下的微分方程: dx/dy=(y+2*a)/(2*a-y),解得: x + y + 4a ln(y − 2a) = c 3.抛物线族满足的微分方程:dy/dx=2c1x,dy/dx=2(y-k)/x,椭圆曲线族满足的微分方程: dy/dx=-2x/(4y-1);两者正交,则k=1/2。 4.两曲线族的所满足的微分方程为:dy/dx=-yn-1/xn-1,dy/dx=x2 /y2 ,两者正交则n=3 5.给定的双曲线满足微分方程dy/dx=x/y,所求得曲线满足微分方程,dy/dx=(2x+y)/(2y-x), y(0)=1,解得: ( 5 4) 2 1 2 y = x + x + 6.设物体下落过程中任意时刻的速度为v(t),则根据牛顿运动定律,我们得到微分 方程:mdv/dt=3mg/4-kv,由物体的极限速度为24m/s,我们得到k=mg/32,v(0)=0, 则我们解得: ( ) 24(1 ) 16 5t v t e − = − ,v(3)=24(1-e-15/16) 7.设物体任意时刻的运动v(t),根据牛顿运动定律,我们得到微分方程: 20dv/dt=10-v(t)/2,v(0)=7,我们得到: 20 ( ) 10 3 t v t e − = − 8. .设物体任意时刻的运动v(t),我们设T时刻物体到达最高点,我们仅仅考虑 (0,T),根据牛顿运动定律,我们得到微分方程:10dv/dt=mg+kv2 ,根据题目中的条 件我们得到:k=2,v(0)=v0,我们得到: ) 10 2 ( ) 5 2 ( 2 0 v v t = tg t + arctg 很容易我们就得到:v(T)=0,T=-arctan(v0 2 /10)/ 2 . 9.设任意时刻该人在银行的存款为也y(t),y(0)=20,000 满足微分方程: