(1)ax +aizx, = br,(1-1)a21x, +a22x, =b2. (2)(2) ×a11 -(1) × a21得:(a11a22 -a12α21)x2 = a11b2 —a21b当au22一al2a21 0 时,方程组的解为:b,a22 - a12b2a,b, -b,a21Xi=Xai1a22 - a12a21a1a22 -12l21
11 1 12 2 1 21 1 22 2 2 , (1) (1-1) . (2) a x a x b a x a x b + = + = 当 a11a22 − a12a21 0时, 方程组的解为: , 11 22 12 21 1 22 12 2 1 a a a a b a a b x − − = 11 2 1 21 2 11 22 12 21 . a b b a x a a a a − = −
aa2定义称为二阶行列式a21a22行列式中横排的叫作行,纵排的叫作列,a,(i,j=1,2)称为行列式的元素,为行标,为列标
定义 11 12 21 22 a a a a 称为二阶行列式。 行列式中横排的叫作行,纵排的叫作列, ( , 1, 2 ) i j a i j = 称为行列式的元素,i为行标,j为列标
二阶行列式的计算一对角线法则d12主对角线= a122 - A12α21次对角线41例如1×3-2×4=-532
a21 11 a 12 a a22 主对角线 次对角线 对角线法则 11 22 = a a . 12 21 − a a 二阶行列式的计算
banx +aix =[a21xi+a2x2=b2当 a122 -a1221 ± 0 时,b,a22 - alizb2a,b, -ba21x =Xaiia22 - a12a21a.a222-a12a21令a11a12b1b1a11a12DD2D1a21a22[b2b2a21a22
+ = + = . , 21 1 22 2 2 11 1 12 2 1 a x a x b a x a x b 当 a11a22 − a12a21 0时, , 11 22 12 21 1 22 12 2 1 a a a a b a a b x − − = 11 2 1 21 2 11 22 12 21 . a b b a x a a a a − = − 令
则二元线性方程组的解为bia12b,anb2Da22b,D2a21XXDaa12Da12ala21a22a22a21注意分母都为原方程组的系数行列式
则二元线性方程组的解为 , 21 22 11 12 2 22 1 12 1 1 a a a a b a b a D D x = = 注意 分母都为原方程组的系数行列式. . 21 22 11 12 21 2 11 1 2 2 a a a a a b a b D D x = =