[分析]:欲证(2),即要证 k+V+1 左边=X2 k!I(v+k+2)(2 证明]:x( J,()=(1y 2k+v k=ok! r(v+k+1)(2 2k+v dx k=ok! r(v+k+1)(2 =∑(-1)·2k(124 k=1k!r(v+k+1)(2
[分析]:欲证(2),即要证 左边 [证明]: 2 1 - 0 (-1) - ! ( 2) 2 k k k x x k k n n n + + ¥ = æ ö = å ç ÷ G + + è ø - ( ) d x J x dx n n é ù ë û 2 0 (-1) ( ) ! ( 1) 2 k k k x J x k k n n n + ¥ = æ ö = å ç ÷ G + + è ø ∵ 2 2 0 (-1) 1 ! ( 1) 2 k k k k d x dx k k n n + ¥ = æ ö = å ç ÷ G + + è ø 2 2 -1 1 (-1) 2 1 ! ( 1) 2 k k k k k x k k n n + ¥ = × æ ö = å ç ÷ G + + è ø
2k+v-1 (k-1)r(+k+1)2 令k-1=1 (-1) 2l+v+1 V x 2lr(v+1+2)2 J+1(x) 应用: ①为派生出其他递推公式 由(1)→xJ(x)+vx1J,(x)=xJ(x)(1)
2 -1 - 0 (-1) ( -1)! ( 1) 2 k k k x x k k n n n + ¥ = æ ö = × å ç ÷ G + + è ø 令 k -1=l 1 2 1 - 0 (-1) ! ( 2) 2 l l l x x l l n n n + + + ¥ = æ ö = × å ç ÷ G + + è ø - 1 -x J x( ) n = n + 应用: ①为派生出其他递推公式 由(1)→ 1 -1 -1 x J ( x) x J ( x) x J x( ) (1) n n n n n n + = n ¢
1)·x:xJ,(x)+vJ(x)=x-(x)(3) 由(2)→x"(x)-vxJ(x)=-xJ1(x)(2) (2) x,(x)-v,(x)=-x+(x)(4 (3)+(4):2J(x)=J(x)-J1(x)(5) (3)-(4) J(x)=J1(x)+J(x)(6) ②只要查J(x)和J1(x)表可计算出任一J(x)
-1 ( ) ( ) ( ) v xJ x J x xJ x n n ¢ + = n (3) 由(2)→ - 1 - -1 - 1 x J (x) - x J (x) -x J x( ) (2) n n n n n n n + = ¢ -1 1 (2) : x n ¢ × 1 ( ) - ( ) - ( ) (4) v xJ x J x xJ x n n n + ¢ = (3)+(4): -1 1 2 ( ) ( ) - ( ) (5) v J x J x J x n n + ¢ = (3)-(4): -1 1 2 J (x) J (x) J x( ) (6) x n n n n = + + ②只要查 J x 0 ( ) 和 J x 1 ( ) 表可计算出任一 J x( ) n g 1 1 (1) : v x - ¢ ×